[skip-to-content]

Sección 2.3 Sumatoria y Productoria

Definición 2.3.1

Sea \(\{a_{n}\}_{n\in\mathbb{N}},r\leq s\) una sucesión y \(r,s\in\mathbb{N}\text{,}\) entonces definimos a:

i) Sumatoria

\begin{equation*} \overset{s}{\underset{i=r}{\sum}}a_{i}=a_{r}+a_{r+1}+a_{r+2}+\cdot\cdot \cdot+a_{s}. \end{equation*}

ii) Productoria

\begin{equation*} \overset{s}{\underset{i=r}{\prod}}a_{i}=a_{r}\cdot a_{r+1}\cdot a_{r+2} \cdot\cdot\cdot a_{s}. \end{equation*}

Calcular

1) \(\overset{5}{\underset{i=3}{\sum}}i=3+4+5=12\text{.}\)

2) \(\overset{4}{\underset{i=2}{\sum}}2^{i}=2^{2}+2^{3}+2^{4}=4+8+16=28\text{.}\)

3) \(\overset{6}{\underset{n=3}{\sum}}(n\cdot i)=i\overset{6}{\underset {n=3}{\sum}}n=i(3+4+5+6)=i(18)=18i\text{.}\)

4) \(\overset{4}{\underset{i=2}{\sum}}\left( \overset{3}{\underset{j=2}{\sum} }j^{i}\right) \text{,}\) donde

\begin{equation*} \begin{array}{rl} \overset{4}{\underset{i=2}{\sum}}\left( \overset{3}{\underset{j=2}{\sum} }j^{i}\right) \amp =\overset{4}{\underset{i=2}{\sum}}(2^{i}+3^{i})\\ \amp =\overset{4}{\underset{i=2}{\sum}}2^{i}+\overset{4}{\underset{i=2}{\sum} }3^{i}\\ \amp =(2^{2}+2^{3}+2^{4})+(3^{2}+3^{3}+3^{4})\\ \amp =145 \end{array} \end{equation*}

Algunas Sumatorias Básicas:

  1. \(\overset{n}{\underset{i=0}{\sum}}i=\frac{n(n+1)}{2}\text{.}\)

  2. \(\overset{n}{\underset{i=0}{\sum}}i^{2}=\frac{n(n+1)(2n+1)}{6}\text{.}\)

  3. \(\overset{n}{\underset{i=0}{\sum}}i^{3}=\left( \frac{n(n+1)}{2}\right) ^{2}\text{.}\)

  4. \(\overset{n}{\underset{i=0}{\sum}}r^{i}=\frac{r^{n+1}-1}{r-1}, r\neq 0; r\neq 1 \text{.}\)

Calcular

\begin{equation*} \overset{n}{\underset{i=0}{\sum}}(2i+1)\text{.} \end{equation*}
Solución 1

Usando propiedades tenemos que

\begin{equation*} \begin{array}{rl} \overset{n}{\underset{i=0}{\sum}}(2i+1) \amp =\overset{n}{\underset{i=0}{\sum} }2i+\overset{n}{\underset{i=0}{\sum}}1\\ \amp =2\overset{n}{\underset{i=0}{\sum}}i+\overset{n}{\underset{i=0}{\sum}}1\\ \amp =2\left( \frac{n(n+1)}{2}\right) +(n+1)\\ \amp =n^{2}+n+n+1\\ \amp =n^{2}+2n+1\\ \amp =(n+1)^{2}. \end{array} \end{equation*}

Calcular

\begin{equation*} \overset{n}{\underset{i=r}{\sum}}i \end{equation*}
Solución 2

Usando propiedades tenemos que

\begin{equation*} \begin{array}{rl} \overset{n}{\underset{i=r}{\sum}}i \amp =\overset{n-r}{\underset{i=r-r}{\sum} }(i+r)\\ \amp =\overset{n-r}{\underset{i=0}{\sum}}(i+r)\\ \amp =\overset{n-r}{\underset{i=0}{\sum}}i+\overset{n-r}{\underset{i=0}{\sum} }r\\ \amp =\frac{(n-r)(n-r+1)}{2}+(n-r+1)r\\ \amp =\frac{(n-r+1)(n-r+2r)}{2}\\ \amp =\frac{(n-r+1)(n+r)}{2}. \end{array} \end{equation*}

Subsección Ejercicios

Calcular las siguientes sumatorias:

  1. \(\overset{100}{\underset{i=0}{\sum}}(i+7)^{2}\)
  2. \(\overset{n}{\underset{i=1}{\sum}}\frac{1}{r(r+1)}\)
  3. \(\overset{n}{\underset{k=1}{\sum}}\frac{1}{(k+1)!}\)
  4. \(\overset{n}{\underset{k=1}{\sum}}k3^{k}\)

    Ayuda:

    \begin{equation*} (k+1)3^{k+1}-k3^{k}=2k3^{k}+3^{k+1}. \end{equation*}

Sea \(r\in\mathbb{R}-\mathbb{\{}0,1\mathbb{\}}\) Calcular \(\overset {n}{\underset{k=0}{\sum}}kr^{k}\)

Solución 3

Veamos primero que, por propiedad telescópica se tiene que

\begin{equation*} \overset{n}{\underset{k=0}{\sum}}\left[ \left( k+1\right) r^{k+1} -kr^{k}\right] =\left( n+1\right) r^{n+1} \end{equation*}

Reescribiendo las sumatoria tenemos

\begin{equation*} \begin{array}{rl} \overset{n}{\underset{k=0}{\sum}}\left[ \left( k+1\right) r^{k+1} -kr^{k}\right] \amp =\sum_{k=0}^{n}\left[ \left( r-1\right) kr^{k} +r^{k+1}\right] \\ \amp =\sum_{k=0}^{n}\left( r-1\right) kr^{k}+\sum_{k=0}^{n}r^{k+1}\\ \amp =\left( r-1\right) \sum_{k=0}^{n}kr^{k}+r\frac{r^{n+1}-1}{r-1} \end{array} \end{equation*}

Igualando los resultados tenemos

\begin{equation*} \begin{array}{rl} \overset{n}{\underset{k=0}{\sum}}\left[ \left( k+1\right) r^{k+1} -kr^{k}\right] \amp =\overset{n}{\underset{k=0}{\sum}}\left[ \left( k+1\right) r^{k+1}-kr^{k}\right] \\ \left( r-1\right) \sum_{k=0}^{n}kr^{k}+r\frac{r^{n+1}-1}{r-1} \amp =\left( n+1\right) r^{n+1}\\ \sum_{k=0}^{n}kr^{k} \amp =\frac{\left( n+1\right) }{r-1}r^{n+1} -r\frac{r^{n+1}-1}{\left( r-1\right)^{2}} \end{array} \end{equation*}

De lo cual se obtiene que

\begin{equation*} \sum_{k=0}^{n}kr^{k} =\frac{ n r^{n+2} -(n+1)r^{n+1}+1}{left( r-1\right)^{2}} \end{equation*}

Por inducción demostraremos la propiedad telescópica. Se define

\begin{equation*} p(n):\overset{n}{\underset{k=0}{\prod}}\frac{a_{k+1}}{{a_{k}}}{=}\frac{a_{n+1} }{a_{0}}. \end{equation*}

Verifiquemos \(p(0)\)

\begin{equation*} \begin{array}{rl} p(0):\overset{0}{\underset{k=0}{\prod}}\frac{a_{k+1}}{a_{k}} \amp =\frac{a_{1} }{a_{0}}\\ \frac{a_{0+1}}{a_{0}} \amp =\frac{a_{1}}{a_{0}}\\ \frac{a_{1}}{a_{0}} \amp =\frac{a_{1}}{a_{0}}. \end{array} \end{equation*}

Luego \(p(0)\) es verdadero. Ahora veamos

\begin{equation*} (\forall n\in\mathbb{N})[ p(n) \Rightarrow p(n+1)] \end{equation*}

es decir, hipótesis

\begin{equation*} p(n):\overset{n}{\underset{k=0}{\prod}}\frac{a_{k+1}}{a_{k}}=\frac{a_{n+1} }{a_{0}}, \end{equation*}

Tesis:

\begin{equation*} p(n+1):\overset{n+1}{\underset{k=0}{\prod}}\frac{a_{k+1}}{a_{k}}=\frac {a_{n+2}}{a_{0}}, \end{equation*}

entonces

\begin{equation*} \begin{array}{rl} \overset{n+1}{\underset{k=0}{\prod}}\frac{a_{k+1}}{a_{k}} \amp = \overset{n}{\underset{k=0}{\prod}}\frac{a_{k+1}}{a_{k}} \cdot\left( \frac{a_{n+1+1}}{a_{n+1}}\right) \\ \amp =\left( \frac{a_{n+1}}{a_{0}}\right) \cdot\left( \frac{a_{n+2}}{a_{n+1}}\right) \\ \amp =\frac{a_{n+1}}{a_{0}}\cdot\frac{a_{n+2}}{a_{n+1}}\\ \amp =\frac{a_{n+2}}{a_{0}}. \end{array} \end{equation*}

Así tenemos la segunda parte y por teorema de inducción concluimos

\begin{equation*} (\forall n\in\mathbb{N})\left( \overset{n}{\underset{k=0}{\prod}} \frac{a_{k+1}}{a_{k}}=\frac{a_{n+1}}{a_{0}}\right) \end{equation*}

con \(a_{k}\not =0\text{,}\) \(\forall k\in\mathbb{N}\text{.}\)

Subsección Ejercicios

Demostrar por inducción la propiedad telescópica,

\begin{equation*} (\forall n\in\mathbb{N})\left( \overset{n}{\underset{k=0}{\sum}} (a_{k+1}-a_{k})=a_{n+1}-a_{0}\right) . \end{equation*}

Calcular

\begin{equation*} \overset{s}{\underset{k=3}{\prod}}3^{(k^{2})} \end{equation*}
Solución 4

Por la propiedad 5 se tiene que

\begin{equation*} \begin{array}{rl} \overset{7}{\underset{k=3}{\prod}}3^{(k^{2})} \amp =3^{3^{2}}\cdot3^{4^{2} }\cdot\cdot\cdot3^{7^{2}}\\ \amp =3^{(3^{2}+4^{2}+\cdot\cdot\cdot+7^{2})}\\ \amp =3^{\overset{7}{\underset{k=3}{\sum}}k^{2}} =3^{140-5}=3^{135}. \end{array} \end{equation*}