Capítulo 3

Espacios Métricos

3.1. Definiciones y Ejemplos

Definición 3.1 Sea X un conjunto y $d: X \times X \to \mathbb{R}^+_0$. Se dice que (X, d) es un espacio métrico, si y sólo si,

- i) Para todo $x, y \in X$, $d(x, y) = 0 \Leftrightarrow x = y$.
- $\mathit{ii)} \ \ \mathit{Para} \ \mathit{todo} \ x,y \in X, \ d(x,y) = d(y,x).$
- iii) Para todo $x, y, z \in X$, $d(x, y) + d(y, z) \geqslant d(x, z)$.

Si (X, d) es un espacio métrico , se dice que d es una métrica sobre X.

Ejemplo 3.1

1. Sean $x,y\in\mathbb{R}^n$ tales que $x=(x_1,\ldots,x_n)$ e $y=(y_1,\ldots,y_n).$

Las siguientes son métricas sobre \mathbb{R}^n :

a)
$$d(x,y) = \sqrt{ \ \sum_{i=1}^n (x_i - y_i)^2 \ }$$
 (métrica usual).

$$\mathrm{b}) \ d(x,y) = \mathrm{m\acute{a}x} \, \Big\{ \ |x_{\mathfrak{i}} - y_{\mathfrak{i}}| \, |1 \leqslant \mathfrak{i} \leqslant \mathfrak{n} \ \Big\}.$$

c)
$$d(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$
.

2. Sea X un conjunto no vacío, la siguiente es una métrica sobre X:

$$d(x,y) = \begin{cases} 0|x = y\\ 1|x \neq y \end{cases}$$

3. Sea (X, d) un espacio métrico. Entonces d' es también una métrica sobre X

$$d'(x,y) = \frac{d(x,y)}{1 + d(x,y)}.$$

4. Sea $\{(X_i, d_i)\}_{i=1}^n$ una familia finita de espacios métricos. Entonces d es una métrica sobre Y, donde

$$Y = \prod_{i=1}^n X_i, \qquad d(x,y) = \max\{d_i(x_i,y_i)\}, \qquad {}^{x=(x_1,\ldots,x_n)}_{y=(y_1,\ldots,y_n)}.$$

5. Sea (X, d) un espacio métrico. Entonces d' es un espacio métrico sobre X

$$d'(x, y) = \min\{d(x, y), 1\}.$$

Definición 3.2 Sean (X, d) un espacio métrico, $x \in X$ y $\epsilon > 0$. Se define la bola de centro x y radio ϵ , denotada $B(x, \epsilon)$, como sigue:

$$B(x, \varepsilon) := \left\{ y \in X | d(x, y) < \varepsilon \right\}.$$

Cuando sea necesario anotaremos por $B_d(x,\varepsilon)$ la bola de centro x y radio ε con respecto a la métrica d.

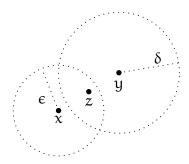
Teorema 3.1 Todo espacio métrico es topológico.

Demostración Sea (X, d) un espacio métrico. En $\mathcal{P}(X)$ consideremos la siguiente colección de subconjuntos:

$$\mathfrak{B}_{d} := \left\{ \ B(x,\varepsilon) | x \in X, \ \varepsilon > 0 \ \right\}.$$

Veamos que \mathcal{B}_d es una base de una topología de X.

- 1. Notar que para todo $x \in X$, $x \in B(x, 1) \in \mathcal{B}_d$.
- 2. Sean $x, y \in X$ y $\epsilon, \delta > 0$ tal que $B(x, \epsilon) \cap B(y, \delta) \neq \emptyset$.



Para todo $z \in B(x, \epsilon) \cap B(y, \delta)$ consideremos $B(z, \gamma)$, donde

$$\gamma = \min \left\{ \ \varepsilon - d(z,x), \ \delta - d(z,y) \ \right\}.$$

Basta probar ahora que $B(z,\gamma)\subseteq B(x,\varepsilon)\cap B(y,\delta)$. Sea $w\in B(z,\gamma)$ entonces $d(w,z)<\gamma\leqslant \varepsilon-d(z,x)$, luego

$$d(w, x) \le d(w, z) + d(z, x) < \epsilon$$

del mismo modo $d(w,y) < \delta$. Por lo tanto $w \in B(x,\varepsilon) \cap B(y,\delta)$.

Así \mathcal{B}_d es una base para una topología sobre X.

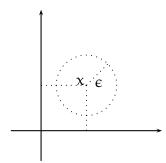
Definición 3.3

- 1. La topología generada por la base \mathcal{B}_d se llama topología inducida por la métrica d y se anota \mathcal{T}_d .
- 2. Se dice que un espacio topológico (X, T) es metrizable, si y sólo si, existe una métrica d sobre X de modo que $T = T_d$.
- 3. Sea (X, d) un espacio métrico $y A \subseteq X$. Se dice que A es un conjunto acotado, si y sólo si, existe M > 0 de modo que para todos $x, y \in A$, d(x, y) < M. En este caso diremos que M es una cota de A.

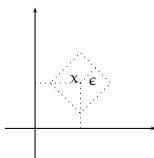
Observación 3.1

- 1. Si M es cota de A, entonces $A\subseteq B(x_o,2M)$ para algún $x_0\in X$.
- 2. La métrica del Ejemplo 3.1.2 induce la topología discreta.

3. La métrica del ejemplo 3.1.1.a en \mathbb{R}^2 . Geométricamente la bola $B_d(x,\varepsilon)$ corresponde a:



4. La métrica del ejemplo 3.1.1.c en \mathbb{R}^2 . Geométricamente la bola $B_d(x,\varepsilon)$ corresponde a:



Lema 3.2 Sean d_1, d_2 dos métricas en X. Entonces, $\mathfrak{T}_{d_2} \subseteq \mathfrak{T}_{d_1}$ si y sólo si, para todo $x \in X$ $y\ \varepsilon>0\ \mathit{existe}\ \delta>0\ \mathit{de}\ \mathit{modo}\ \mathit{que}\ B_{d_1}(x,\delta)\subseteq B_{d_2}(x,\varepsilon).$

Demostración Notemos que:

 $U_1 \in \mathcal{T}_{d_1}$, si y sólo si, existen $B_{d_1}(x_i, \epsilon_i) \in \mathcal{B}_{d_1}$ tal que $U_1 = \bigcup_i B(x_i, \epsilon_i)$.

 $U_2 \in \mathcal{T}_{d_2}$, si y sólo si, existen $B_{d_2}(x_j, \delta_j) \in \mathcal{B}_{d_2}$ tal que $U_2 = \bigcup_j B(x_j, \delta_j)$.

 \Rightarrow) Sean $x \in X$, $\epsilon > 0$. Consideremos la bola $B_{d_2}(x,\epsilon) \in \mathcal{T}_{d_2} \subseteq \mathcal{T}_{d_1}$, entonces, existen $B_{d_1}(x_i,\delta_i) \,\in\, \mathcal{B}_{d_1} \,\,\mathrm{de \ modo \ que} \,\, B_{d_2}(x,\varepsilon) \,=\, \bigcup_i \, B_{d_1}(x_i,\delta_i), \,\,\mathrm{luego}, \,\,\mathrm{existe} \,\,i_0 \,\,\mathrm{tal} \,\,\mathrm{que} \,\,x \,\in\, \mathcal{B}_{d_1}(x_i,\delta_i)$ $B_{d_1}(x_{i_0}, \delta_{i_0})$. Por lo tanto

$$x \in B_{d_1}(x, \delta) \subseteq B_{d_1}(x_{i_0}, \delta_{i_0}) \subseteq B_{d_2}(x, \epsilon),$$

donde $\delta := (\delta_{i_0} - d_1(x_{i_0}, x))/2.$

$$\begin{aligned} & \iff \exists \ U = \bigcup_{x \in U} B_{d_2}(x, \varepsilon_x) \in \mathfrak{T}_{d_2}, \ \mathrm{entonces} \\ & x \in B_{d_1}(x, \delta_x) \subseteq B_{d_2}(x, \varepsilon_x), \qquad U = \bigcup_{x \in U} B_{d_1}(x, \delta_x) \in \mathfrak{T}_{d_1}, \end{aligned}$$

por lo tanto $\mathcal{T}_{d_2} \subseteq \mathcal{T}_{d_1}$.

- Ejercicio 3.2 1. Estudiar si $d(A, B) = \sqrt{tr((A B)^t \cdot (A B))}$ define una distancia en el espacio de matrices 2×2 . Nota: recuérdese que tr = traza indica la suma de los elementos de la diagonal principal.
 - 2. Demostrar que $d(x,y) = \min(|x-y|, 1-|x-y|)$ define una distancia en [0,1). ¿Cuáles son las funciones $f:[0,1) \to \mathbb{R}$ continuas en este espacio?
 - 3. Sea (X, d) un espacio métrico $y f : X \to X$ una aplicación continua. Probar que el conjunto de puntos que f deja fijos es un cerrado de X.

¿Es cierto el resultado para un espacio topológico arbitrario (X, T)?.

Teorema 3.3 Sea (X, d) un espacio métrico, entonces

- 1. X es hausdorff
- 2. X es normal.

Demostración Dado $x,y\in X$ dos puntos distintos luego $\frac{1}{2}d(x,y)=\delta>0$ así se obtiene que

$$x \in B(x,\delta), \ y \in B(y,\delta)$$

además $z \in B(x, \delta) \cap B(y, \delta)$.

$$d(x,y) \leqslant d(x,z) + d(y,z) < 2\delta = (x,y).$$

De lo cual

$$x \in B(x,\delta), \ y \in B(y,\delta), \ B(x,\delta) \cap B(y,\delta) = \varphi$$

Sean A, B cerrados y disjuntos en X. Para todo $\mathfrak{a} \in A$ y todo $\mathfrak{b} \in B$ existen se define

$$\varepsilon_{\alpha} = \inf\{d(\alpha, b) \mid b \in B\}$$

si $\varepsilon_{\alpha}=0$, significa que $(\forall \delta>0)(B(\alpha,\delta)\cap B\neq \varphi)$, luego tenemos $\alpha\in\overline{B}=B$, lo cual no es posible ya que son disjuntos A, B. De este modo tenemos que $\varepsilon_{\alpha}>0$

Luego de manera similar existe $\varepsilon_b > 0$, con $b \in B$.

De la definición anterior tenemos que

$$B(\alpha, \epsilon_{\alpha}) \subseteq B^{c}, \qquad B(b, \epsilon_{b}) \subseteq A^{c},$$

luego, basta considerar

$$U = \bigcup_{\alpha \in A} B(\alpha, \varepsilon_\alpha/2) \in \mathfrak{T}_d, \qquad V = \bigcup_{b \in B} B(b, \varepsilon_b/2) \in \mathfrak{T}_d.$$

Claramente $U \cap V = \emptyset$, pues, si $x \in U \cap V$ entonces

$$d(\mathfrak{a},\mathfrak{b})\leqslant d(\mathfrak{a},\mathfrak{x})+d(\mathfrak{b},\mathfrak{x})<\varepsilon_{\mathfrak{a}}/2+\varepsilon_{\mathfrak{b}}/2\leqslant \max\{\varepsilon_{\mathfrak{a}},\varepsilon_{\mathfrak{b}}\},$$

es decir, $\mathfrak{a} \in B(\mathfrak{b}, \mathfrak{e}_{\mathfrak{b}}) \subseteq A^{\mathfrak{c}}$ o $\mathfrak{b} \in B(\mathfrak{a}, \mathfrak{e}_{\mathfrak{a}}) \subseteq B^{\mathfrak{c}}$ lo cual es una contradicción. Por lo tanto X es normal.

3.2. Topología Producto en \mathbb{R}^{J}

Notemos que

$$\prod_{x \in J} \mathbb{R} = \{f \in F(J,\mathbb{R}) | (\forall x \in J) (f(x) \in \mathbb{R})\} = \mathbb{R}^J.$$

Luego $\mathbb{R}^{\mathbb{N}}$ es el conjunto de sucesiones reales.

Proposición 3.1 Sean $\mathfrak{a} = \{\mathfrak{a}_n\}_{n \in \mathbb{N}} \ y \ \mathfrak{b} = \{\mathfrak{b}_n\}_{n \in \mathbb{N}} \ dos \ sucesiones \ de \ números \ reales.$

Entonces

$$d\left(\mathfrak{a},\mathfrak{b}\right)=\sup_{\mathfrak{n}\in\mathbb{N}}\left\{\min\left\{\ |\mathfrak{a}_{\mathfrak{n}}-\mathfrak{b}_{\mathfrak{n}}|,1\ \right\}\right\},$$

es una métrica en $\mathbb{R}^{\mathbb{N}}$

 $\mbox{\bf Demostraci\'on} \ \ {\rm Consideremos} \ \alpha,b \in \mathbb{R}^{\mathbb{N}} \ {\rm como} \ {\rm antes} \ y \ c = \{c_n\}_{n \in \mathbb{N}}.$

i) Tenemos lo siguiente:

$$\begin{split} \mathbf{d}(\mathfrak{a},\mathfrak{b}) &= 0 &\Leftrightarrow & \sup_{\mathfrak{n} \in \mathbb{N}} \{ \min_{\mathfrak{n} \in \mathbb{N}} \{ |\mathfrak{a}_{\mathfrak{n}} - \mathfrak{a}_{\mathfrak{n}}|, 1 \} \} = 0 \\ &\Leftrightarrow & \min_{\mathfrak{n} \in \mathbb{N}} \{ |\mathfrak{a}_{\mathfrak{n}} - \mathfrak{a}_{\mathfrak{n}}|, 1 \} = 0 \\ &\Leftrightarrow & |\mathfrak{a}_{\mathfrak{n}} - \mathfrak{b}_{\mathfrak{n}}| = 0, \text{ para todo } \mathfrak{n} \in \mathbb{N} \\ &\Leftrightarrow & \mathfrak{a}_{\mathfrak{n}} = \mathfrak{b}_{\mathfrak{n}}, \text{ para todo } \mathfrak{n} \in \mathbb{N} \\ &\Leftrightarrow & \mathfrak{a} = \mathfrak{b} \end{split}$$

ii) Como $|a_n - b_n| = |b_n - a_n|$, entonces:

$$\begin{split} d\left(\alpha,b\right) &= \sup_{n\in\mathbb{N}} \left\{ \min_{n\in\mathbb{N}} \left\{ |\alpha_n - b_n|, 1 \right\} \right\}, \\ &= \sup_{n\in\mathbb{N}} \left\{ \min_{n\in\mathbb{N}} \left\{ |b_n - a_n|, 1 \right\} \right\}, \\ &= d(b, a). \end{split}$$

iii) Como $|\mathfrak{a}_{\mathfrak{n}}-\mathfrak{b}_{\mathfrak{n}}|\leqslant |\mathfrak{a}_{\mathfrak{n}}-\mathfrak{c}_{\mathfrak{n}}|+|\mathfrak{c}_{\mathfrak{n}}-\mathfrak{b}_{\mathfrak{n}}|,$ entonces claramente

$$d(a, b) \leq d(a, c) + d(c, b)$$
.

Por lo tanto $(\mathbb{R}^{\mathbb{N}}, d)$ es un espacio métrico.

Ejemplo 3.3 Calcular la distancia d(f, g) en cada caso:

- a) $Si f(n) = n, g(n) = 2n \in \mathbb{R}^{\mathbb{N}}.$
- b) $Si\ f(n) = \left(\frac{1}{2}\right)^n,\ g(n) = \left(\frac{1}{3}\right)^n \in \mathbb{R}^{\mathbb{N}}.$

Observación 3.2 En general, para cualquier conjunto $J \neq \emptyset$. Se tiene que (\mathbb{R}^J, ρ) es un espacio métrico, con

$$\rho(f,g) = \sup_{x \in I} \left\{ \min \left\{ \ |f(x) - g(x)|, 1 \ \right\} \right\}, \qquad \left(f,g \in \mathbb{R}^J\right).$$

La métrica ρ es llamada **métrica uniforme** sobre \mathbb{R}^J . La topología inducida por ρ es llamada topología uniforme (\mathbb{R}^J , \mathcal{T}_{ρ}) sobre \mathbb{R}^J .

Definición 3.4 Para cada $x \in J$, consideremos U_x un abierto en \mathbb{R} . Se define el siguiente producto:

$$\prod_{x \in J} U_x := \left\{ f \in \mathbb{R}^J | (\forall x \in J) (f(x) \in U_x) \right\}. \tag{3.1}$$

Proposición 3.2 La familia de productos en (3.1) tales que $U_x \neq \mathbb{R}$ para una cantidad finita de elementos de J, es una base para una topología de \mathbb{R}^J .

Demostración Denotemos por \mathcal{B} la familia considerada anteriormente

- i) Sea $f \in \mathbb{R}^J$, entonces $f \in \prod_{x \in J} \mathbb{R} \in \mathcal{B}$, ya que $U_x = \mathbb{R}$ para todo $x \in J$.
- ii) Sea $f \in \prod_{x \in J} U_x \cap \prod_{x \in J} V_x = \prod_{x \in J} U_x \cap V_x \in \mathcal{B}$ ya que

$$\{x \in J | U_x \cap V_x \neq \mathbb{R}\} = \{x \in J | U_x \neq \mathbb{R}\} \cup \{x \in J | V_x \neq \mathbb{R}\}.$$

Por lo tanto ${\mathcal B}$ es una base para una topología de ${\mathbb R}^{{\mathsf J}}.$

La topología generada por la familia de la Proposición 3.2 es llamada topología producto $(\mathbb{R}^J, \mathfrak{T})$ sobre \mathbb{R}^J .

Teorema 3.4 La topología uniforme de \mathbb{R}^J es más fina que la topología producto en \mathbb{R}^J . Además son distintas cuando J es infinito.

Demostración Sea $f \in \prod_{x \in J} U_x \in \mathcal{B}$, entonces, existen $x_1, \ldots, x_n \in J$ de modo que $U_{x_i} \neq \mathbb{R}$ y $f(x_i) \in U_{x_i}$ para todo $i = 1, \ldots, n$. Como U_i es abierto en \mathbb{R} , entonces para cada i existe $\epsilon_i > 0$ tal que

$$]f(x_i) - \epsilon_i, f(x_i) + \epsilon_i[\subseteq U_{x_i}]$$

Sea $\varepsilon := \min\{\varepsilon_1, \dots, \varepsilon_n, 1/2\}$, tenemos $f \in B_{\rho}(f, \varepsilon)$. Ahora probaremos que $B_{\rho}(f, \varepsilon) \subseteq \prod_{x \in J} U_x$. Sea $g \in B(f, \varepsilon)$, claramente $g(x) \in U_x = \mathbb{R}$ para todo $x \in J \setminus \{x_1, \dots, x_n\}$, por otra parte tenemos $\rho(g, f) < \varepsilon$ es decir,

$$\sup_{x \in I} \{ \min\{|g(x) - f(x)|, 1\} \} < \varepsilon$$

entonces $|g(x_j) - f(x_j)| < \varepsilon < \varepsilon_j$, luego

$$g(x_j)\subseteq]f(x_j)-\varepsilon_j, f(x_j)+\varepsilon_j[\subseteq U_{x_j},$$

es decir, $g \in \prod_{x \in J} U_x$.

Así tenemos $f \in B_{\rho}(f,\varepsilon) \subseteq \prod_{x \in J} U_x$, por Lema 3.2 se obtiene $\mathfrak{T} \subseteq \mathfrak{T}_{\rho}$.

Si J es infinito, la bola $B_{\rho}(1,\frac{1}{2})$ de centro la función constante igual a 1 y radio 1/2 no contiene ningún elemento basal de la topología producto

Teorema 3.5 La topología que induce la siguiente métrica \mathbf{d} en $\mathbb{R}^{\mathbb{N}}$ es igual a la topología producto.

$$d(x,y):=\sup_{i\in\mathbb{N}}\left\{\frac{1}{i}\min\{|x_i-y_i|,1\}\right\},\quad x=\{x_i\}_{i\in\mathbb{N}},\quad y=\{y_i\}_{i\in\mathbb{N}}.$$

Demostración Utilicemos nuevamente el Lema 3.2.

Sea $\varepsilon > 0$, consideremos $f \in B_d(g, \varepsilon) \in \mathcal{T}_d$ y $\varepsilon' = \varepsilon - d(f, g) > 0$, entonces $B_d(f, \varepsilon') \subseteq B_d(g, \varepsilon)$, ya que, si $h \in B_d(f, \varepsilon')$ se tiene

$$d(f, h) < \epsilon',$$
 $d(f, q) = \epsilon - \epsilon' > 0,$

 $\mathrm{luego}\ d(g,h)\leqslant d(g,f)+d(f,h)=\varepsilon-\varepsilon'+d(f,h)<\varepsilon-\varepsilon'+\varepsilon'=\varepsilon.$

Sea $N \in \mathbb{N}$ tal que $1/N < \epsilon'$ y para cada $i \in \mathbb{N}$ se define el siguiente conjunto:

$$U_i := \left\{ \begin{array}{ll}]f(i) - \varepsilon', f(i) + \varepsilon'[& ; & i < N \\ & \mathbb{R} & ; & i \geqslant N \end{array} \right.$$

Luego $\prod_{i\in\mathbb{N}}U_i$ es un elemento basal de la topología producto, que además contiene a f, pues $f(i)\in U_i$ para todo $i\in\mathbb{N}$.

Sea $h \in \prod_{\mathfrak{i} \in \mathbb{N}} U_{\mathfrak{i}}.$ Si $\mathfrak{i} < N$ tenemos $|h(\mathfrak{i}) - f(\mathfrak{i})| < \varepsilon',$ luego

$$\frac{1}{i}\min\{|h(i)-f(i)|,1\}<\frac{1}{i}\min\{\varepsilon',1\}\leqslant\frac{\varepsilon'}{i},$$

entonces

$$\sup_{\mathfrak{i}<\mathbb{N}}\left\{\frac{1}{\mathfrak{i}}\min\left\{\left|h(\mathfrak{i})-f(\mathfrak{i})\right|,1\right\}\right\}\leqslant \sup_{\mathfrak{i}\in\mathbb{N}}\{\varepsilon'/\mathfrak{i}\}<\varepsilon'.$$

Ahora, si $i \ge N$, tenemos

$$\sup_{\mathfrak{i}\geqslant N}\left\{\frac{1}{\mathfrak{i}}\min\{\left|h(\mathfrak{i})-f(\mathfrak{i})\right|,1\}\right\}\leqslant \sup_{\mathfrak{i}\in \mathbb{N}}\left\{\frac{1}{\mathfrak{i}}\right\}<\frac{1}{N}<\varepsilon'.$$

Por lo tanto $d(h, f) < \epsilon'$, luego

$$f \in \prod_{i \in \mathbb{N}} U_i \subseteq B_d(f, \varepsilon') \subseteq B_d(g, \varepsilon).$$

Recíprocamente, sea $\prod_{i\in\mathbb{N}}U_i$ un elemento basal de la topología producto, y $f\in\prod_{i\in\mathbb{N}}U_i$. Sean i_1,\ldots,i_r de modo que $U_{i_j}\neq\mathbb{R}$, sabemos que $f(s)\in U_s$, entonces, para todo $s\in\{i_1,\ldots,i_r\}$ existe ε_s tal que

$$]f(s)-\varepsilon_s,f(s)+\varepsilon_s[\,\subseteq U_s.$$

Definamos $\epsilon > 0$ como sigue:

$$\varepsilon := \frac{1}{t} \min \left\{ \varepsilon_{i_j} | 1 \leqslant j \leqslant r+1, \ \varepsilon_{r+1} = 1/2 \right\}, \quad t = \max \{i_1, \dots, i_r\}.$$

Sea $h \in B_d(f, \varepsilon)$, si $s \notin \{i_1, \dots, i_r\}$, entonces $h(s) \in \mathbb{R} = U_s$. Por otra parte, si $s \in \{i_1, \dots, i_r\}$, notemos que

$$\frac{1}{s}\min\{|f(s) - h(s)|, 1\} \leqslant \sup_{i \in \mathbb{N}} \left\{ \frac{1}{i}\min\{|f(i) - h(i)|, 1\} \right\} = d(f, h) < \epsilon, \tag{3.2}$$

у

$$t\varepsilon < \frac{1}{2}, \qquad \varepsilon < \frac{1}{2t}, \qquad s \leqslant t, \qquad s\varepsilon \leqslant \frac{s}{2t} \leqslant \frac{1}{2}.$$

Luego, multiplicando por s en (3.2) obtenemos lo siguiente

$$\min\{|f(s) - h(s)|, 1\} < s\varepsilon \leqslant \frac{1}{2},$$

así $|h(s)-f(s)| < s\varepsilon \leqslant (s\varepsilon_s)/t \leqslant \varepsilon_s,$ por lo tanto

$$h(s) \in U_s, \qquad h \in B_d(f, \varepsilon) \subseteq \prod_{i \in \mathbb{N}} U_i.$$

Esto demuestra que ambas topologías son iguales, note que es un ejemplo no trivial de topología metrizable. $\hfill\Box$

Teorema 3.6 Sean $(X, d_X), (Y, d_Y)$ espacios métricos. Una función $f: X \to Y$ es continua, si y sólo si, para todo $x \in X$ y todo $\varepsilon > 0$, existe $\delta > 0$ de modo que para todo $y \in X$ se tiene

$$d_X(x,y)<\delta\quad \Rightarrow\quad d_Y(f(x),f(y))<\varepsilon.$$

Demostración

 \Rightarrow) Sea $x \in X$ y $\varepsilon > 0$. Consideremos $B_{d_Y}(f(x), \varepsilon) \in \mathcal{T}_{d_Y}$, como f es continua, entonces $x \in f^{-1}(B_{d_Y}(f(x), \varepsilon)) \in \mathcal{T}_{d_X}$. Luego, existe $\delta > 0$ tal que

$$y \in B(x, \delta) \subseteq f^{-1}(B_{d_Y}(f(x), \varepsilon)),$$

lo cual equivale a tener, para todo $y \in X$

$$d_X(x,y) < \delta \quad \Rightarrow \quad d_Y(f(x),f(y)) < \varepsilon.$$

 \Leftarrow) Sea $B_{d_Y}(z,\varepsilon) \in \mathcal{T}_{d_Y}$, si existe $x \in f^{-1}(B_{d_Y}(y,\varepsilon))$, entonces $f(x) \in B_{d_Y}(z,\varepsilon)$, luego, existe $\varepsilon' > 0$ de modo que

$$B_{d_Y}(f(x), \epsilon') \subseteq B_{d_Y}(z, \epsilon).$$

Por hipótesis, existe $\delta > 0$ tal que

$$d_X(x,y) < \delta \quad \Rightarrow \quad d_Y(f(x),f(y)) < \varepsilon',$$

para todo $y \in X$, es decir,

$$B_{d_X}(x,\delta) \subseteq f^{-1}(B_{d_Y}(f(x),\epsilon')) \subseteq f^{-1}(B_{d_Y}(z,\epsilon)).$$

Así tenemos que

$$f^{-1}(B_{d_Y}(z,\varepsilon)) = \bigcup_{x \in f^{-1}(B_{d_Y}(z,\varepsilon))} B_{d_X}(x,\delta_x) \in \mathfrak{T}_{d_X},$$

por lo tanto f es continua.

3.3. Convergencia

Definición 3.5 Sea X un espacio topológico $y\{x_n\}_{n\in\mathbb{N}}$ una sucesión de puntos en X. Se dice que $\{x_n\}_{n\in\mathbb{N}}$ converge a x si y sólo si, para todo $U_x\in\mathcal{V}(x)$, existe $N\in\mathbb{N}$ tal que para todo $n\in\mathbb{N}$, si n>N entonces $x_n\in U_x$.

Notación 3.1 Si la sucesión $\{x_n\}_{n\in\mathbb{N}}$ converge a x se denotado por $x_n \to x$.

Ejemplo 3.4 Sea $X = \{a, b, c\}$, $\mathcal{T} = \{\emptyset, \{a\}, \{b, c\}, X\}$ $y \{x_n\}_{n \in \mathbb{N}}$ successón en X tal que $x_i = b$ para todo $i \in \mathbb{N}$.

 $\label{eq:consideremos} \begin{subarray}{ll} \textit{Consideremos} \begin{subarray}{ll} \textit{X}_i \textit{b}, \textit{c} \end{subarray} \in \mathcal{V}(\textit{b}), \textit{ para todo } i \in \mathbb{N}, \textit{x}_i \in \textit{U}, \textit{ por lo tanto}, \textit{x}_n \rightarrow \textit{b}; \textit{ note} \\ \textit{además que } \textit{x}_n \rightarrow \textit{c} \textit{ ya que } \textit{X}, \{\textit{b}, \textit{c}\} \in \mathcal{V}(\textit{c}) \textit{ para todo } i \in \mathbb{N} \textit{ y todo } \textit{x}_i \in \textit{U}. \end{subarray}$

Proposición 3.3 En un espacio topológico Hausdorff, el punto de convergencia es único

Demostración Sea $\{x_n\}_{n\in\mathbb{N}}$ una sucesión convergente tal que $x_n \to a$ y $x_n \to b$ de modo que $a \neq b$, como el espacio topológico es Hausdorff, existen abiertos U_a , U_b disjuntos, además la sucesión converge, luego existen $N, M \in \mathbb{N}$, tales que a partir de un instante los elementos perteneces a U_a y U_b respectivamente, escogiendo el máximo entre N, M obtenemos que los elementos pertenecen a ambos conjuntos, es decir, los abiertos no son disjuntos.

De lo cual se obtiene que de existir la convergencia es única.

Ejemplo 3.5 Considere N con la topología cofinita, determine la convergencia o divergencia de las siguientes sucesiones

1.

$$f(n) = \begin{cases} 1 & si & n \ es \ par \\ 0 & si & n \ es \ impar \end{cases}$$

2.

$$g(n) = \begin{cases} 0 & si & n \text{ es par} \\ n & si & n \text{ es impar} \end{cases}$$

3. h(n) = n

Solución: La primera es divergente, la segunda converge a 0 solamente, y la tercera converge a N, para todo N número Natural

Lema 3.7 Sean X un espacio topológico, $A \subseteq X$ y $\{x_n\}_{n \in \mathbb{N}}$ una sucesión de puntos en A. Si $x_n \to x$, entonces, $x \in \overline{A}$.

Demostración Sea $U \in \mathcal{V}(x)$, como $x_n \to x$, existe $x_{n_o} \in A$ tal que $x_{n_o} \in U$, luego $U \cap A \neq \emptyset$, por lo tanto $x \in \overline{A}$.

Veamos el recíproco:

Proposición 3.4 Sean X un espacio métrico y $A \subseteq X$. Si $x \in \overline{A}$ entonces existe una sucesión $\{x_n\}_{n\in\mathbb{N}}$ de puntos en A, tal que $x_n \to x$.

Demostración Supongamos que X es metrizable, como $x \in \overline{A}$ sabemos que para todo $\epsilon > 0$, $B(x, \epsilon) \cap A \neq \emptyset$, en particular para $\epsilon \in \left\{ \ 1/n | n \in \mathbb{Z}^+ \ \right\}$, de este modo tenemos que existe $x_n \in A$ tal que $x_n \in B(x, 1/n)$, se tiene así la siguiente sucesión

$$\left\{ \ B(x,1/n) \ \right\}_{n=1}^{\infty},$$

luego, por propiedad Arquimidiana, para todo $\epsilon > 0$ existe $N \in \mathbb{N}$ tal que $0 < 1/N < \epsilon$, entonces $x_N \in B(x,1/N) \subseteq B(x,\epsilon)$, es decir, si $y \in B(x,1/N)$ entonces $d(x,y) < 1/N < 1/\epsilon$, así $x_{N+1} \in B(x,1/(N+1)) \subseteq B(x,\epsilon)$, por lo tanto $x_n \to x$.

Teorema 3.8 Sean (X, d) un espacio métrico e Y un espacio topológico.

Una función $f:X\to Y$ es continua, si y sólo si, para toda sucesión convergente $x_n\to x$, se tiene, $f(x_n)\to f(x)$.

Demostración

 \Rightarrow) Supongamos que $x_n \to x$ y sea $f(x) \in U \in \mathcal{V}(f(x))$, como f es continua, entonces $x \in f^{-1}(U) \in \mathcal{T}_d$, luego, existe $\epsilon > 0$ tal que

$$x \in B_d(x, \varepsilon) \subseteq f^{-1}(U)$$
.

Como $x_n \to x$, existe $N \in \mathbb{N}$ de modo que para todo i > N, $x_i \in B_d(x, \varepsilon)$, es decir $f(x_i) \in U$. Esto prueba que $f(x_n) \to f(x)$.

 \Leftarrow) Utilicemos el Teorema 2.3, sea $A \subseteq X$, probemos que $f(\overline{A}) \subseteq \overline{f(A)}$. Sea $x \in \overline{A}$, como (X, \mathcal{T}_d) es métrizable por d, entonces, por Lema 3.7 existe una sucesión $\{x_n\}_{n \in \mathbb{N}} \subseteq A$ tal que $x_n \to x$. Por hipótesis $f(x_n) \to f(x)$, nuevamente por Lema 3.7 tenemos $f(x) \in \overline{f(A)}$, por lo tanto $f(\overline{A}) \subseteq \overline{f(A)}$. Esto prueba que f es continua.

Definición 3.6 Sean X un conjunto, Y un espacio métrico y $\{f_n\}_{n\in\mathbb{N}}$ una sucesión de funciones de X en Y. Se dice que $\{f_n\}_{n\in\mathbb{N}}$ converge uniformemente a la función $f: X \to Y$, denotado por $f_n \stackrel{u}{\to} f$, si y sólo si, para todo $\epsilon > 0$, existe N > 0 tal que para todo n > N y todo $x \in X$, se tiene $d(f_n(x), f(x)) < \epsilon$.

Ejemplo 3.6 Para cada $n \in \mathbb{N}$ definimos la siguiente función

$$f_n:[0,1]\to\mathbb{R},\quad f_n(x):=rac{x}{n},$$

y anotamos $\widehat{0}$ la función nula en [0,1]. Veamos que $f_n \xrightarrow{u} \widehat{0}$:

Sea $\varepsilon > 0$, por propiedad Arquimidiana, existe $N \in \mathbb{N}$ tal que $1/\varepsilon < N$, es decir, $1/N < \varepsilon$. Sea $n \in \mathbb{N}$, n > N y $x \in [0, 1]$, entonces

$$d\left(f_n(x),\widehat{0}(x)\right) = \left|\frac{x}{n} - 0\right| = \left|\frac{x}{n}\right| = \left|\frac{1}{n}\right| |x| < \frac{1}{N} \cdot 1 = \frac{1}{N} < \varepsilon.$$

Por lo tanto $f_n \stackrel{u}{\to} \widehat{0}$.

Teorema 3.9 Sea (X, T) un espacio topológico, (Y, d) un espacio métrico y $\{f_n\}_{n \in \mathbb{N}}$ una sucesión de funciones de X en Y.

 $\mathit{Si}\ f_{\mathfrak{n}} \xrightarrow{u} f\ \mathit{y}\ f_{\mathfrak{n}}\ \mathit{es \ continua \ para \ todo}\ \mathfrak{n} \in \mathbb{N},\ \mathit{entonces},\ f\ \mathit{es \ continua}.$

 $\begin{array}{ll} \textbf{Demostración} & \mathrm{Sea} \ U \in \mathfrak{T}_d, \ \mathrm{para} \ \mathrm{cada} \ x \in f^{-1}(U) \ \mathrm{existe} \ \varepsilon > 0 \ \mathrm{tal} \ \mathrm{que} \ B_d(f(x), \varepsilon) \subseteq U. \\ \mathrm{Además}, \ \mathrm{existe} \ N \in \mathbb{N} \ \mathrm{de} \ \mathrm{modo} \ \mathrm{que} \ \mathrm{para} \ \mathrm{todo} \ n > N \ \mathrm{se} \ \mathrm{tiene} \ d(f_n(y), f(y)) < \varepsilon/2, \ \mathrm{para} \ \mathrm{todo} \\ y \in X, \ \mathrm{entonces}, \ \mathrm{para} \ \mathrm{todo} \ n > N, \ f_n(x) \in B_d(f(x), \varepsilon/2), \ \mathrm{luego} \ x \in f_n^{-1}(B_d(f(x), \varepsilon/2)) \in \mathfrak{T}. \end{array}$

Sea
$$z \in f_n^{-1}(B(f(x), \varepsilon/2))$$
, entonces $d(f_n(z), f(x)) < \varepsilon/2$, luego

$$d(f(z),f(x)) \leqslant d(f(z),f_n(z)) + d(f_n(z),f(x)) < \varepsilon/2 + \varepsilon/2 = \varepsilon,$$

es decir $z \in f^{-1}(B_d(f(x), \epsilon))$. Por lo tanto

$$x \in f_n^{-1}(B_d(f(x),\varepsilon/2)) \subseteq f^{-1}(B_d(f(x),\varepsilon)) \subseteq f^{-1}(U), \qquad n > N$$

Así se tiene que f es continua.

Definición 3.7 Sean $(X, d_X), (Y, d_Y)$ espacios métricos y $f: X \to Y$ una función biyectiva. Se dice que f es una isometría , si y sólo si, para todo par de puntos $x, y \in X$, se tiene

$$d_X(x,y) = d_Y(f(x),f(y)).$$

Proposición 3.5 Toda isometría es un homeomorfismo.

Ejemplo 3.7 Determinemos todas las isometrías de \mathbb{R} en \mathbb{R} con la métrica usual, es decir las funciones biyectivas $f: \mathbb{R} \to \mathbb{R}$ tal que |x - y| = |f(x) - f(y)|.

Sean $x, y \in \mathbb{R}$, si y = 0 entonces

$$|x - 0| = |f(x) - f(0)| \Leftrightarrow |x| = |f(x) - f(0)|$$

$$\Leftrightarrow x = f(x) - f(0) \quad \lor \quad -x = f(x) - f(0)$$

$$\Leftrightarrow f(x) = x + f(0) \quad \lor \quad f(x) = -x + f(0)$$

Además, si en el domino de la función existe valores x, y tales que

$$f(x) = x + f(0), \quad f(y) = -y + f(0)$$

$$luego |x - y| = |f(x) - f(y)| = |x + f(0) + y - f(0)| = |x + y|, es decir, x = 0 o y = 0$$

Por otra parte las funciones

$$t_{\alpha}(x) = x + \alpha,$$
 $\ell_{\alpha}(x) = -x + \alpha,$

son isometrías, ya que

$$|\mathsf{t}_{\mathfrak{a}}(\mathsf{x}) - \mathsf{t}_{\mathfrak{a}}(\mathsf{y})| = |\mathsf{x} + \mathsf{a} - \mathsf{y} - \mathsf{a}| = |\mathsf{x} - \mathsf{y}|,$$

$$|\ell_{\alpha}(x) - \ell_{\alpha}(y)| = |-x + \alpha + y - \alpha| = |-x + y| = |x - y|.$$

de este modo la únicas isometrías de \mathbb{R} , con la métrica usual son $t_{\alpha}, \ell_{\alpha}$.

Ejemplo 3.8 Las siguientes funciones son isometrías:

1. Consideramos la métrica sobre \mathbb{R}^2 definida por:

$$d(x, y) = \max\{|x_1 - y_1|, |x_2 - y_2|\},\$$

donde $x=(x_1,x_2)$ e $y=(y_1,y_2)$. Sea $\mathfrak{a}\in\mathbb{R}^2$, definimos $t_\mathfrak{a}:\mathbb{R}^2\to\mathbb{R}^2$ tal que $t_\mathfrak{a}(x):=x+\mathfrak{a},$ entonces

$$d(t_{\alpha}(x), t_{\alpha}(y)) = d(x, y).$$

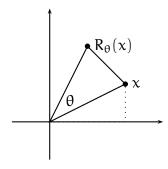
Por lo tanto $t_{\mathfrak{a}}$ es una isometría en (\mathbb{R}^2,d) .

2. Consideremos \mathbb{R}^2 con d la métrica usual y definamos $R_\theta:\mathbb{R}^2\to\mathbb{R}^2$ como sigue:

$$R_{\theta}(x) := \left(\begin{array}{cc} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{array} \right) \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right), \quad x = (x_1, x_2).$$

No es difícil ver que $d(R_{\theta}(x), R_{\theta}(y)) = d(x, y)$.

Por lo tanto R_{θ} es una isometría.



Observación 3.3 Notemos que $\|x + y\|^2 = \|x\|^2 + \|y\|^2 + 2 < x, y >$, entonces

$$< x, y > = \frac{1}{2} \left[\|x + y\|^2 - \|x\|^2 - \|y\|^2 \right].$$

Las isometrías lineales en un espacio vectorial pertenecen al grupo ortogonal. En efecto, si f es una isometría lineal, se tiene:

$$< f(x), f(y) > = \frac{1}{2} (\|f(x) + f(y)\|^2 - \|f(x)\|^2 - \|f(y)\|^2),$$

$$= \frac{1}{2} (\|f(x+y)\|^2 - \|f(x)\| - \|f(y)\|),$$

$$= < x, y > .$$

Por lo tanto f pertenece al grupo ortogonal.

3.4. Ejercicios Propuestos

- 1. Sean (E, d) un espacio métrico demostrar que (E, \mathcal{T}_d) es un espacio de Hausdorff.
- 2. Sean (E, d) un espacio métrico demostrar que:

Si
$$d_1(x,y) = \frac{d(x,y)}{d(x,y)+1}$$
 entonces (E,d_1) es un espacio métrico

Ayuda: Sea
$$f: \mathbb{R}_0^+ \to \mathbb{R}_0^+; f(x) = \frac{x}{x+1}$$

- a) f es creciente
- b) $(\forall a, b \in \mathbb{R}_0^+)(f(a+b) f(a) \leqslant f(b))$
- c) Usando (i) y (ii) obtener que $(\forall a,b,c \in \mathbb{R}^+_0) (c \leqslant a+b \Rightarrow f(c) \leqslant f(a)+f(b))$
- 3. Sean (E, d) un espacio métrico $f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$, tal que
 - a) $f(x) = 0 \iff x = 0$; para todo $x \in \mathbb{R}_0^+$
 - b) $f(x+y) \leqslant f(x) + f(y)$ para todo $x, y \in \mathbb{R}_0^+$
 - c) f creciente entonces demostrar que Si $d_2(x, y) = f(d(x, y))$ entonces (E, d_2) es un espacio métrico
- 4. Sea

$$d(x,y) = \begin{cases} |x| + |y| & x \neq y \\ 0 & x = y \end{cases}$$

Demostrar que (\mathbb{R}, d) un espacio métrico

5. Sea X un conjunto no vacío y sea

$$B(X, \mathbb{R}) = \{f : X \to \mathbb{R} : f \text{ es acotada}\}\$$

se define $f,g\in B(X,\mathbb{R});$ $d(f,g)=\sup_{x\in X}\{|f(x)-g(x)|\}.$

Demostrar que $(B(X,\mathbb{R}),d)$ es un espacio métrico

6. Sea (M, d) un espacio métrico, X un conjunto no vacío y

$$B(X, M) = \{f : X \to M : f \text{ es acotada}\}\$$

Demostrar que (B(X, M), d) es un espacio métrico, donde

$$d(f,g) = \sup_{x \in X} \{d(f(x),g(x))\} \qquad f,g \in B(X,M).$$

7. Sean (X, d) un espacio métrico y $f: X \to \mathbb{R}$ una función continua. Demostrar que d' es una métrica sobre X y $\mathcal{T}_d = \mathcal{T}_{d'}$, donde

$$d'(x, y) = d(x, y) + |f(x) - f(y)|.$$

8. Determinar si es que $(C([0,1],\mathbb{R}),d)$ es un espacio métrico, donde

$$C([0,1],\mathbb{R}) = \left\{ f: I_0^1 \to \mathbb{R} | f \text{ es continua} \right\}$$

У

$$d(f,g) = \int_0^1 |f(x) - g(x)| dx.$$

9. Sean $(X_i, d_i)_{i \in I}$ una familia finita de espacio métricos y

$$X = \begin{pmatrix} \times X_{i} \\ i \in I \end{pmatrix} = \prod_{i \in I} X_{i},$$

entonces pruebe que las siguientes funciones son métricas sobre X

$$\textit{a)} \ d_1(x,y) = \sqrt{\sum_{i \in I} d_i(x_i,y_i)^2}, \, \mathrm{donde} \ x = (x_i)_{i \in I}, y = (y_i)_{i \in I} \in X$$

b)
$$d_2(x,y) = \sum_{i \in I} d_i(x_i,y_i)$$
 donde $x = (x_i)_{i \in I}, y = (y_i)_{i \in I} \in X$

$$\mathit{c}) \ d_3(x,y) = \max_{i \in I} \{d_i(x_i,y_i)\} \ \mathrm{donde} \ x = (x_i)_{i \in I}, y = (y_i)_{i \in I} \in X$$

10. Se denota c(x) la distancia al entero más cercano desde x, (por ejemplo, c(1/4) = 1/4 y c(5/6) = 1/6).

En $X = [0, 1) \times [0, 1)$, se define

$$d((x_1, y_1), (x_2, y_2)) = c(x_1 - x_2) + c(y_1 - y_2)$$

Demostrar que (X, d) es un espacio métrico.

11. Por \mathbb{R}^{ω} denotamos el espacio de todas las sucesiones de números reales $x=(x_n)$. Demuestre que (\mathbb{R}^{ω}, d) es un espacio métrico, donde $d: \mathbb{R}^{\omega} \times \mathbb{R}^{\omega} \to \mathbb{R}$ dada por

$$d(x,y) = \sum_{n} \frac{|x_n - y_n|}{2^n(1 + |x_n - y_n|)} \qquad x \in \mathbb{R}^{\omega}, y \in \mathbb{R}^{\omega}$$

¿Cuál es la distancia entre las sucesiones $\mathbf{x}=(\mathbf{x_n})=((1-2^{-\mathbf{n}})^{-1})$ e $\mathbf{y}=(\mathbf{y_n})=(1)$?.

12. Sean ℓ_{∞} el espacio de todas las sucesiones acotadas. Demostrar que $(\ell_{\infty}, \mathbf{d})$ es un espacio métrico, donde $\mathbf{d}: \ell_{\infty} \times \ell_{\infty} \to \mathbb{R}$ dada por

$$d(x,y) = \sup\{|x_n - y_n|, \quad n \in \mathbb{N}\}\$$

13. Sean ℓ_2 el espacio de todas las sucesiones $\mathbf{x}=(\mathbf{x}_n)$ tales que $\sum_{\mathbf{n}}\mathbf{x}_{\mathbf{n}}^2<\infty$. Demostrar que (ℓ_2,\mathbf{d}) es un espacio métrico, donde y $\mathbf{d}:\ell_2\times\ell_2\to\mathbb{R}$ definida por

$$d(x, y) = \left(\sum_{n} |x_n - y_n|^2\right)^{1/2}$$

Indicación: si $\mathbf{x} = (\mathbf{x}_n) \in \ell_2$, $\mathbf{y} = (\mathbf{y}_n) \in \ell_2$, entonces $\sum |\mathbf{x}_n \mathbf{y}_n|$ converge y, además, $(\sum |\mathbf{x}_n \mathbf{y}_n|)^2 \leqslant (\sum \mathbf{x}_n^2)(\sum \mathbf{y}_n^2)$.

14. En \mathbb{R}^n tenemos definida dos métricas

a)
$$d_1(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$
, donde $x = (x_i), y = (y_i) \in \mathbb{R}^n$

b)
$$d_2(x,y) = \max_i \{|x_i - y_i|\} \text{ donde } x = (x_i), y = (y_i) \in \mathbb{R}^n$$

Demostrar que las topologías inducidas por las métricas son iguales

- 15. Dado $d(x, y) = (x y)^2$. Muestre que (\mathbb{R}, d) no es espacio métrico.
- 16. Sean (E, d) un espacio métrico $f, g : E \to \mathbb{R}$, funciones continuas entonces

a)
$$f + g : E \to \mathbb{R}$$
, $(f + g)(x) = f(x) + g(x)$ es continua

b)
$$f - g : E \to \mathbb{R}$$
, $(f - g)(x) = f(x) - g(x)$ es continua

c)
$$f \cdot g : E \to \mathbb{R}$$
, $(f \cdot g)(x) = f(x) \cdot g(x)$ es continua

d)
$$f \div g : E \to \mathbb{R}$$
, $(f \div g)(x) = f(x) \div g(x)$ es continua, si $(\forall x \in E)(g(x) \neq 0)$

17. Sea (M, d) un espacio métrico, $a \in X$,

$$B(X, M) = \{f : X \to M : f \text{ es acotada}\}\$$

con la métrica dada por $d(f,g) = \sup_{x \in X} \{d(f(x),g(x))\}.$

Demostrar que

$$ev_a: B(X, M) \to M, ev_a(f) = f(a)$$

es continua.

18. Sean (X, d) un espacio métrico y $\alpha > 0$.

Probar que $d'(x,y)=\min\{\alpha,d(x,y)\}$ es una distancia que genera la misma topología que d.

- 19. Sea (X, d) un espacio métrico, $X \times X$ espacio topológico inducido por la métrica de d. Demostrar que d es continua
- 20. Sea (X, d) un espacio métrico, $A \subseteq X$. Se define

$$d_A:X\to\mathbb{R}, d_A(x)=d(x,A)=\inf_{\alpha\in A}\{d(x,\alpha)\}$$

Demostrar que d_A es continua.

21. Sean $\mathsf{B}(0,1) = \{x \in \mathbb{R}^n | \|x\| < 1\}$ la bola unitaria y

$$f: \mathbb{R}^n \longrightarrow B(0,1)$$

$$x \rightsquigarrow \frac{x}{1+||x||}$$

Demostrar que f es un homeomorfismo con las topología usuales.

22. Sea \mathbb{R} con la métrica usual

$$s: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \quad s(x, y) = x + y.$$

- a) Demostrar que s es un función contínua
- b) Sean A, B $\subset \mathbb{R}$ abiertos

$$A + B = \{a + b \in \mathbb{R} : a \in A, b \in B\}$$

Demostrar que A + B es abierto.

23. Sea \mathbb{R} con la métrica usual

$$p: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \quad p(x, y) = xy.$$

- a) Demostrar que p es un función contínua
- b) Sean A, B $\subset \mathbb{R}$ abiertos

$$AB = \{ab \in \mathbb{R} : a \in A, b \in B\}$$

Determine si AB es abierto.

24. Sean

$$: \mathbb{R}^{n} \to \mathbb{R}, \text{ con} \cdot (x) = x_{1}x_{2}...x_{n} = \prod_{i=1}^{n} x_{i}$$

$$+ : \mathbb{R}^{n} \to \mathbb{R}, \text{ con} + (x) = x_{1} + x_{2} + ... + x_{n} = \sum_{i=1}^{n} x_{i}$$

- a) Demostrar que +, son funciones continuas
- $b) \ \ \mathsf{H} = \{x \in \mathbb{R}^{\mathfrak{n}} \quad : \quad \mathfrak{a}_1 x_1 + \ldots + \mathfrak{a}_{\mathfrak{n}} x_{\mathfrak{n}} = \mathfrak{p} \} \ \mathrm{es \ cerrado}.$

c)
$$A = \{x \in \mathbb{R}^n : x_1 x_2 ... x_n < p\}$$
 es abierto

25. Sean $(X_i, d_i), (Y_i, d'_i)$ espacios métricos i = 1, 2

$$f_i: X_i \to Y_i$$

У

$$f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2, \quad (f_1 \times f_2) (x_1, x_2) = (f_1 (x_1), f_2 (x_2))$$

Demostrar que $f_1 \times f_2$ es continua si y sólo si f_1, f_2 son continuas.

26. Sean (X, d), (Y, d') y (Z, d'') espacios métricos $a \in X, b \in Y$ y

$$f: X \times Y \rightarrow Z$$
.

se define

$$f_{\alpha} : Y \rightarrow Z, \quad f_{\alpha}(y) = f(\alpha, y)$$

$$f^{b}$$
: $Y \rightarrow Z$, $f^{b}(x) = f(x, b)$

- a) Pruebe que si f
 es continua entonces $\mathsf{f}_{\mathfrak{a}},\mathsf{f}^{\mathfrak{b}}$ son continuas
- b) Es válido el recíproco
- 27. Sean (X, d), (Y, d') espacios métricos $a \in X$

$$f, g: X \to Y$$
, continuas

Demostrar que:

- a) Si $f(a) \neq g(a)$ entonces existe una bola B de centro en a tal que $f(B) \cap g(B) = \phi$
- b) $A = \{x \in X : f(x) \neq g(x)\}$ es abierto.
- 28. Sean (X, d), (Y, d') espacios métricos, $a \in X$ y

$$f, g: X \to Y$$
, continuas

Demostrar que, Si f(a) < g(a) entonces existe $\delta > 0$, para todo $x, y \in B(a, \delta)$ se tiene que f(x) < g(y).

29. Sean (X, d), (Y, d') espacios métricos $a \in X$

$$f, g: X \to Y$$
, continuas

Demostrar que:

- a) Si toda bola de centro a tiene un punto x tal que f(x) = g(x) entonces f(a) = g(a).
- b) $A = \{x \in X : f(x) = g(x)\}$ es cerrado.
- 30. Sean $f, g : \mathbb{R} \to \mathbb{R}$, continuas tal que f(x) = g(x) para todo $x \in \mathbb{Q}$ entonces f = g
- 31. Sean (X, d), (Y, d') espacios métricos

$$\nu: B(X,Y) \times X \to Y, \quad \nu(f,x) = f(x)$$

Demostrar que ν es continua en (f_0, x_0) si y sólo si f_0 es continua en x_0 .

32. Sea (X, d) espacio métrico

$$f,g:X\to\mathbb{R},$$

se define

$$(f \lor g) : X \to \mathbb{R}, \quad (f \lor g)(x) = \max\{f(x), g(x)\}$$

$$(f \wedge g) \ : \ X \to \mathbb{R}, \quad (f \vee g) \, (x) = \min \{ f(x), g(x) \}$$

Demostrar que si f, g son continuas en x_0 entonces $f \vee g$, $f \wedge g$ son continuas en x_0 .

33. Sea $f:[a,b]\to\mathbb{R}$, una función continua tal que f(a)>0>f(b) y $c=\sup\{x\in[a,b]:f(x)>0\}$. Demostrar que f(c)=0.