Capítulo 1

Espacios Topológicos

1.1. Conceptos Básicos

Sea X un conjunto y $\mathcal{T} \subseteq \mathcal{P}(X)$. Se dice que (X,\mathcal{T}) es un espacio topológico, si y sólo si, se cumplen las siguientes propiedades:

- i) $\emptyset, X \in \mathfrak{T}$.
- ii) Si $U, V \in \mathcal{T}$, entonces, $U \cap V \in \mathcal{T}$.
- iii) Si $\{U_i\}_{i\in I}$ es una familia de elementos de $\mathfrak{T},$ entonces, $\cup_{i\in I}U_i\in \mathfrak{T}.$

Si (X, \mathcal{T}) es un espacio topológico, diremos que \mathcal{T} es una topología de X.

Definición 1.1 Sea (X, T) un espacio topológico.

- 1. Se dice que U es abierto en (X, \mathcal{T}) , si y sólo si, $U \in \mathcal{T}$.
- 2. Se dice que U es cerrado en (X, \mathfrak{T}) , si y sólo si, $U^c \in \mathfrak{T}$.

Ejemplo 1.1 Sea X un conjunto.

- 1. Sea $\mathfrak{T} = \{\emptyset, X\}$. El par $(X, \{\emptyset, X\})$ se llama espacio topológico trivial.
- 2. Sea $\mathfrak{T} = \mathfrak{P}(X)$. El par $(X, \mathfrak{P}(X))$ se llama espacio topológico discreto.

3. Sea $\mathfrak{p} \in X$. Entonces el par (X, \mathfrak{T}) es un espacio topológico, con

$$\mathfrak{T} = \{ U \in \mathfrak{P}(X) | U = X \quad \text{o} \quad \mathfrak{p} \not\in U \} \,.$$

- i) $X \in \mathfrak{T} \ y \emptyset \in \mathfrak{T}$, ya que $\mathfrak{p} \notin \emptyset$.
- ii) Sean $U, V \in \mathfrak{T}$

Si U = X. Entonces $U \cap V = V \in \mathfrak{I}$.

 $Si \ U \neq X$. Entonces $p \notin U$, luego $p \notin U \cap V$, por lo tanto $U \cap V \in \mathcal{T}$.

iii) Sea $U_i \in \mathcal{T}$, para todo $i \in I$

Si existe $i_0 \in I$ tal que $U_{i_0} = X$. Entonces $X = U_{i_0} \subseteq \bigcup_{i \in I} U_i \subseteq X$. Luego $\bigcup_{i \in I} U_i = X \in \mathcal{T}$.

Si para todo $i \in I$, $U_i \neq X$. Entonces para todo $i \in I$, $\mathfrak{p} \not\in U_i$, luego $\mathfrak{p} \not\in \bigcup_{i \in I} U_i$. Por lo tanto $\bigcup_{i \in I} U_i \in \mathfrak{I}$.

Caso particular, si $X = \{1, 2, 3\}$ y p = 2. Entonces

$$\mathfrak{T} = \left\{ \ \emptyset, X, \{1\}, \{3\}, \{1,3\} \ \right\},$$

y los cerrados son: \emptyset , X, $\{2\}$, $\{1, 2\}$.

4. Si G es un grupo $y \mathfrak{T} = \{H|H \leqslant G\} \cup \{\emptyset\}.$

 $El\ par\ (\mathsf{G},\mathfrak{T})\ no\ es\ un\ espacio\ topológico,\ pues\ la\ unión\ de\ subgrupos\ no\ es\ un\ subgrupo.$

5. Si $\mathfrak{T} = \{ | a, b[|a, b \in \mathbb{R}, a < b \} \cup \{ \mathbb{R} \} \cup \{ \emptyset \}.$

El par $(\mathbb{R}, \mathfrak{I})$ no es un espacio topológico.

6. Sea (X, \mathfrak{T}) un espacio topológico y $\mathfrak{p} \not\in X$. Definamos

$$Y = X \cup \{p\}, \qquad \mathfrak{T}' = \mathfrak{T} \cup \{Y\}.$$

Entonces (Y, T') es un espacio topológico.

i) Por definición $Y \in \mathfrak{T}'$ $y \emptyset \in \mathfrak{T} \subset \mathfrak{T}'$.

ii) Sean $U, V \in \mathfrak{T}'$

 $Si \ U, V \in \mathcal{T}, \ entonces \ U \cap V \in \mathcal{T} \subset \mathcal{T}'.$

 $Si \ U \in \mathcal{T} \ y \ V = Y, \ entonces \ U \cap V = U \in \mathcal{T} \subset \mathcal{T}'.$

iii) Sea $U_i \in \mathfrak{T}'$, para todo $i \in I$

Si para todo $i \in I$, $U_i \in \mathcal{T}$, entonces $\bigcup_{i \in I} U_i \in \mathcal{T} \subset \mathcal{T}'$.

Si existe $i_0 \in I$ tal que $U_{i_0} = Y$, entonces $\bigcup_{i \in I} U_i = Y \in \mathfrak{T}'$.

Ejercicio 1.2

1. Sea $X = \mathbb{R}^n$ y $S \subseteq \mathbb{R}[x_1, \dots, x_n]$, se define V(S) como sigue

$$V(S) := \{ z \in \mathbb{R}^n | f(z) = 0, \forall f \in S \},$$

 $y\ consideremos$

$$\mathfrak{I}_z = \{ \mathbb{R}^n \backslash V(S) | S \subseteq \mathbb{R}[x_1, \dots, x_n] \} \cup \{\emptyset\}.$$

Compruebe que (X, \mathcal{T}_z) es un espacio topológico.

La colección \mathcal{T}_z es llamada Topología de Zariski.

2. Sea X un conjunto. Comprobar que el par (X, \mathcal{T}_c) es un espacio topológico

$$\mathfrak{I}_c = \{ U \subset X | U^c \text{ es finito} \} \cup \{\emptyset\}.$$

La colección $\mathfrak{T}_{\mathbf{c}}$ es conocida como Topología del Complemento Finito.

3. Sea (X, \mathbb{R}) un conjunto totalmente ordenado. Comprobar que el par (X, \mathbb{T}) es un espacio topológico

$$\mathfrak{T} = \{ \cup_{i \in I}] \, \alpha_i, \, b_i [| \text{I} \textit{conjunto de indice}, \, \alpha_i, b_i \in X \} \, .$$

 $\mathit{donde} \] \alpha_i, b_i [= \{ x \in X \ | \ \alpha_i \mathcal{R} x \wedge x \mathcal{R} b_i \}.$

La colección T es conocida como Topología del Orden.

4. Sean X, Y dos espacios topológicos disjuntos. Comprobar que el par $(X \cup Y, T_{X \cup Y})$ es un espacio topológico

$$\mathfrak{I}_{X \cup Y} = \{U \cup V | U \in \mathfrak{I}_X, V \in \mathfrak{I}_Y\}.$$

La colección $\mathfrak{T}_{\mathsf{X} \sqcup \mathsf{Y}}$ es conocida como Topología Union disjunta.

Observación Dos conjuntos se pueden modificar de modo de poder obtener una union disjunta, por ejemplo, dados X, Y, se tienen que $X \times \{0\}$, $Y \times \{1\}$, son disjuntos.

Observación 1.1 Si(X,T) es un espacio topológico. Entonces

$$\mathfrak{T} \subseteq \mathfrak{P}(X) \quad y \quad \mathfrak{T} \in \mathfrak{P}(\mathfrak{P}(X)).$$

Además, como $(\mathfrak{P}(\mathfrak{P}(X)),\subseteq)$ es un conjunto parcialmente ordenado. Luego el conjunto de todas las topologías de X es un conjunto parcialmente ordenado. Su primer elemento es $\{\emptyset,X\}$ la topología trivial y su último elemento es $\mathfrak{P}(X)$ la topología discreta .

Definición 1.2 Sean T, T' dos topologías de X.

- 1. Se dice que \mathfrak{T}' es mas fina que \mathfrak{T} , si y sólo si, $\mathfrak{T} \subset \mathfrak{T}'$.
- 2. Se dice que T es menos fina que T', si y sólo si, $T \subseteq T'$.

1.2. Base de una Topología

Sea X un conjunto y $\mathcal{B} \subseteq \mathcal{P}(X)$. Se dice que \mathcal{B} es una base de una topología de X, si y sólo si, se cumplen las siguientes propiedades:

- i) Para todo $x \in X$, existe $B \in \mathcal{B}$ tal que $x \in B$.
- ii) Para todo $B_1, B_2 \in \mathcal{B}$ y todo $x \in B_1 \cap B_2$, existe $B \in \mathcal{B}$ tal que

$$x \in B \subseteq B_1 \cap B_2$$
.

Ejemplo 1.3

- 1. $\mathfrak{B} = \{ a, b | a, b \in \mathbb{R}, a < b \}$ es una base para una topología de \mathbb{R} .
 - *i)* Si $x \in \mathbb{R}$, entonces $x \in]x 1, x + 1[\in \mathcal{B}$.
 - ii) $Si x \in]a, b[\cap]c, d[$, entonces

$$x \in]f, g[\subseteq]a, b[\cap]c, d[,$$

 $donde f = máx\{a, c\} \ y \ g = mín\{b, d\}.$

- 2. $\mathcal{B} = \{H \subseteq G | H \leqslant G\}$ es una base para una topología de G.
 - i) Para todo $g \in G$, se tiene $G \leqslant G \in \mathcal{B}$.
 - *ii)* Si H, $K \in \mathcal{B}$ y $g \in H \cap K$, se tiene $H \cap K \leq G$, luego $H \cap K \in \mathcal{B}$.

Ejercicio 1.4 Sea $x \in \mathbb{R}^2$ $y \in \mathbb{R}^+$, se define

$$B(x,\varepsilon):=\left\{y\in\mathbb{R}^2|\sqrt{(x_1-y_1)^2+(x_2-y_2)^2}<\varepsilon\right\},$$

donde $x = (x_1, x_2) \ e \ y = (y_1, y_2).$

Demostrar que \mathcal{B} es una base para una topología de \mathbb{R}^2 .

$$\mathcal{B} = \left\{ \ B(x,\varepsilon) | x \in \mathbb{R}^2, \varepsilon \in \mathbb{R}^+ \ \right\}.$$

Proposición 1.1 Sea X un conjunto y B una base de una topología de X, se define

$$\mathfrak{I}_{\mathfrak{B}} := \left\{ \ U \subseteq X | (\forall x \in U) (\exists B \in \mathfrak{B}) (x \in B \subseteq U) \ \right\} \cup \left\{ \ \emptyset \ \right\}.$$

Entonces $(X, \mathcal{T}_{\mathcal{B}})$ es un espacio topológico.

Demostración

- i) Tenemos $\emptyset \in \mathfrak{T}_{\mathcal{B}}$.
- ii) Sea $x \in X$. Como \mathcal{B} es una base, existe $B \in \mathcal{B}$ tal que $x \in B \subseteq X \in \mathcal{T}_{\mathcal{B}}$.
- iii) Sean $U, V \in \mathcal{T}_{\mathcal{B}}$. Si $x \in U$ y $x \in V$, existen $B_1, B_2 \in \mathcal{B}$ tal que

$$x\in B_1\subseteq U, \qquad x\in B_2\subseteq V.$$

Entonces $x \in B_1 \cap B_2$. Como $\mathcal B$ es una base, existe $B \in \mathcal B$ de modo que

$$x \in B \subseteq B_1 \cap B_2 \subseteq U \cap V$$
,

luego $U \cap V \in T_{\mathcal{B}}$.

iv) Sea $\{U_i\}_{i\in I}$ una familia de elementos de $\mathcal{T}_{\mathcal{B}}$ y sea $x\in\bigcup_{i\in I}U_i$, entonces existe $i_0\in I$ tal que $x\in U_{i_0}\in\mathcal{T}_{\mathcal{B}}$. Por lo tanto, existe $B\in\mathcal{B}$ tal que

$$x \in B \subseteq U_{\mathfrak{i}_0} \subseteq \bigcup_{\mathfrak{i} \in I} U_{\mathfrak{i}} \in \mathfrak{T}_{\mathfrak{B}}.$$

Luego $(X, \mathcal{T}_{\mathcal{B}})$ es un espacio topológico.

Definición 1.3 Se dice que $\mathcal{T}_{\mathcal{B}}$ es la topología generada por la base \mathcal{B} .

Observación 1.2 Si \mathcal{B} es una base de una topología de X y $U \in \mathcal{T}_{\mathcal{B}}$. Entonces, para todo $x \in U$, existe $B_x \in \mathcal{B}$ tal que

$$x \in B_x \subseteq U$$
, $U = \bigcup_{x \in U} B_x$.

Notese que $\mathfrak{T}_{\mathbb{B}}$ es la topología mas pequeña que contiene a \mathbb{B} .

Ejemplo 1.5

1. La topología (G, T_B) generada por la base en el Ejemplo 1.3.2 es llamada Topología de los Subgrupos, en la vecindad del neutro. En efecto $U \in T_B$, si y sólo si, para todo $x \in U$ existe $H \leq G$ de modo que $x \in H \subseteq U \subseteq G$.

En general,

$$\mathcal{B} = \{ gH \subseteq G | H \leqslant G, g \in G \}$$

es un base, que genera la topología de grupo.

- 2. Sea X un conjunto. Entonces $B = \{A \in \mathcal{P}(X) | |A| = 1\}$ es una base de una topología de X.
 - i) Para todo $x \in X$, $x \in \{x\} \in \mathcal{B}$.
 - ii) Sean $B_1, B_2 \in \mathcal{B}$ y $x \in B_1 \cap B_2$, entonces

$$x\in B_1=B_2=\{x\}=B_1\cap B_2.$$

Notar que $\mathfrak{T}_{\mathbb{B}}=\mathfrak{P}(X)$ topología discreta en X.

Ejercicio 1.6

1. Para todo $p(x,y) \in \mathbb{R}[x,y]$, se define $B_{p(x,y)}$ como sigue:

$$B_{p(x,y)} := \{(a,b) \in \mathbb{R}^2 | p(a,b) \neq 0\}.$$

Demostrar que $\mathbb B$ es una base de una topología de $\mathbb R^2$ (Topología de Zariski)

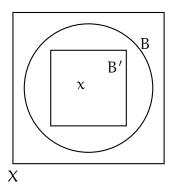
$$\mathcal{B} = \left\{ B_{p(x,y)} | p(x,y) \in \mathbb{R}[x,y] \right\}.$$

2. Demostrar que la siguiente colección es una base para una topología de $\mathbb R$ (Topología de Débil o Sorgenfrey)

$$\mathcal{B} = \{ [a, b \subseteq \mathbb{R} | a < b \}$$

Proposición 1.2 Sean X un conjunto y B, B' bases de topologías de X. Entonces las siquientes proposiciones son equivalentes:

- 1) $\mathfrak{T}_{\mathcal{B}'}$ es más fina que $\mathfrak{T}_{\mathcal{B}}$.
- 2) Para todo $x \in X$ y $B \in \mathcal{B}$ que contiene a x, existe $B' \in \mathcal{B}'$ tal que $x \in B' \subseteq B$.



Demostración Sabemos que:

$$\mathfrak{T}_{\mathcal{B}} = \{ \mathbf{U} \in \mathfrak{P}(\mathbf{X}) | (\forall \mathbf{x} \in \mathbf{U}) (\exists \mathbf{B} \in \mathfrak{B}) (\mathbf{x} \in \mathbf{B} \subseteq \mathbf{U}) \},$$

$$\mathfrak{I}_{\mathfrak{B}'} = \{ U \in \mathfrak{P}(X) | (\forall x \in U) (\exists B' \in \mathfrak{B}') (x \in B' \subseteq U) \} \,.$$

2) \Rightarrow 1) Sea $U \in \mathcal{T}_{\mathcal{B}}$ y $x \in U$, luego existe $B_x \in \mathcal{B}$ tal que $x \in B_x \subseteq U$. Por 2) existe $B_x' \in \mathcal{B}'$ de modo que

$$x \in B_x' \subseteq B_x \subseteq U,$$

luego

$$U=\bigcup_{x\in U}B_x'\in \mathfrak{T}_{\mathcal{B}'}.$$

Por lo tanto $\mathfrak{T}_{\mathcal{B}} \subseteq \mathfrak{T}_{\mathcal{B}'}$.

1) \Rightarrow 2) Sea $x \in X$ y $B \in \mathcal{B}$ que contiene a x. Entonces $B \in \mathcal{T}_{\mathcal{B}} \subseteq \mathcal{T}_{\mathcal{B}'}$, luego existe $B' \in \mathcal{B}'$ tal que

$$x \in B' \subseteq B$$
.

Esto demuestra la proposición.

Ejemplo 1.7 En \mathbb{R} se tienen las siguientes bases:

$$\mathcal{B} = \{ a, b \subseteq \mathbb{R} | a < b \}, \qquad \mathcal{B}' = \{ [a, b \subseteq \mathbb{R} | a < b \}.$$

Probaremos que $\mathfrak{T}_{\mathcal{B}} \subseteq \mathfrak{T}_{\mathcal{B}'}$.

Sean $a, b \in \mathbb{R}$, a < b $y \in a, b$, entonces a < x < b. Luego tenemos:

$$x \in [x, b[\subset]a, b[, [x, b[\in \mathcal{B}']]$$

Por lo tanto $\mathfrak{T}_{\mathcal{B}'}$ es mas fina que $\mathfrak{T}_{\mathcal{B}}$.

1.2.1. Sub-Base

Definición 1.4 Sean X un conjunto $y S \subseteq \mathcal{P}(X)$. Se dice que S es una sub-base para una topología de X, si y sólo si,

$$\bigcup_{S\in \mathbb{S}}S=X.$$

Ejercicio 1.8

¿Todas las bases son sub-bases?, ¿Por qué?

- **2**. Sea $X = \{a, b, c, d\}$. Comprobar que:
 - a) $S = \{\{a, b\}, \{c, d\}\}\ es\ base\ y\ sub-base\ de\ X.$
 - b) $S = \{\{a, b\}, \{a, c\}, \{a, d\}\}\ \text{es sub-base pero no base de } X.$

Proposición 1.3 Si S es una sub-base para una topología de X, entonces la siguiente colección, denotada por \mathcal{B}_S , es una base para una topología sobre X

$$\mathcal{B}_{\mathcal{S}} := \left\{ \bigcap_{i=1}^{s} S_{i} | s \in \mathbb{N}, \ S_{i} \in \mathcal{S} \right\}.$$

Demostración

i) Sea $x \in X$, como S es una sub-base, existe $A_0 \in S$ tal que

$$x \in A_0 \in \mathcal{B}_s$$
.

ii) Sean $B_1, B_2 \in \mathcal{B}_{\delta}$ y $x \in B_1 \cap B_2$. Sabemos que:

$$B_1 = \bigcap_{i=1}^{s_1} S_i, \quad B_2 = \bigcap_{j=1}^{s_2} T_j, \qquad S_i, T_j \in \mathcal{S}.$$

Entonces

$$x \in B_1 \cap B_2 = S_1 \cap S_2 \cap \dots \cap S_{s_1} \cap T_1 \cap T_2 \cap \dots \cap T_{s_2} \in \mathfrak{B}_{\$}.$$

Por lo tanto $\mathcal{B}_{\mathcal{S}}$ es una base de una topología de X.

Observación 1.3 La topología mas pequeña que contiene a S está dada por:

$$\mathfrak{T} = \left\{ \bigcup_{\mathfrak{i} \in I} \left(\bigcap_{\mathfrak{j}=1}^{s_{\mathfrak{i}}} S_{\mathfrak{i}_{\mathfrak{j}}} \right) | S_{\mathfrak{i}_{\mathfrak{j}}} \in \mathfrak{S} \right\}.$$

Notemos además que $S \subseteq \mathcal{T}$.

1.3. Topología Producto

Sean (X, \mathcal{T}_1) , (Y, \mathcal{T}_2) dos espacios topológicos. Se desea construir una topología en $X \times Y$. Para esto consideremos la siguiente colección:

$$\mathfrak{C} := \{ U \times V | U \in \mathfrak{T}_1, \ V \in \mathfrak{T}_2 \}.$$

- i) Es claro que \emptyset , $X \times Y \in \mathcal{C}$.
- ii) Sean $U_1 \times V_1, U_2 \times V_2, \dots, U_n \times V_n \in \mathfrak{C}.$ Tenemos

$$\begin{split} (a,b) &\in \underset{i=1}{\overset{n}{\cap}} U_i \ \Leftrightarrow \ (a,b) \in U_i \times V_i, \quad \forall i, \\ &\Leftrightarrow \ a \in U_i, \quad \forall i, \quad y \ b \in V_i, \quad \forall i, \\ &\Leftrightarrow \ a \in \underset{i=1}{\overset{n}{\cap}} U_i, \quad y \ b \in \underset{i=1}{\overset{n}{\cap}} V_i, \quad \forall i, \\ &\Leftrightarrow \ (a,b) \in \left(\underset{i=1}{\overset{n}{\cap}} U_i\right) \times \left(\underset{i=1}{\overset{n}{\cap}} V_i\right). \end{split}$$

Por lo tanto

$$\mathop{\cap}\limits_{i=1}^n U_i \times V_i = \left(\mathop{\cap}\limits_{i=1}^n U_i\right) \times \left(\mathop{\cap}\limits_{i=1}^n V_i\right).$$

iii) La unión arbitraria de elementos en $\mathcal C$ no necesariamente está en $\mathcal C$. Por ejemplo, sean $X=Y=\mathbb R,$ ambos con la topología usual, es fácil ver que la unión de rectángulos no es siempre un rectángulo _____

$$(]1,3[\times]1,3[)\cup(]2,4[\times]2,4[)\not\in\mathcal{B}.$$

En general $\mathcal C$ no es una topología. La siguiente proposición demuestra que $\mathcal C$ es una base para una topología de $X\times Y$ la cual llamaremos topología producto.

Proposición 1.4 C es una base para una topología de X × Y.

Demostración

- i) Se tiene $(x, y) \in X \times Y \in \mathcal{C}$.
- ii) Si $(x, y) \in (U_1 \times V_1) \cap (U_2 \cap V_2)$, entonces

$$(x, y) \in (U_1 \cap U_2) \times (V_1 \cap V_2) \subseteq (U_1 \times V_1) \cap (U_2 \cap V_2)$$

$$\mathrm{con}\ (U_1\cap U_2)\times (V_1\cap V_2)\in \mathfrak{C}.$$

Por lo tanto, $\mathcal C$ es una base para una topología de $X\times Y$.

Definición 1.5 La topología generada por la base anterior se llama Topología producto de $X \times Y$.

Notación 1.1 La topología producto de (X, \mathcal{T}_1) con (Y, \mathcal{T}_2) se denota por

$$\mathfrak{T}_1 \times \mathfrak{T}_2$$
.

Proposición 1.5 Sean $\mathcal{B}_1, \mathcal{B}_2$ bases para las topologías $(X, \mathcal{T}_1), (Y, \mathcal{T}_2)$ respectivamente. Entonces \mathcal{B} es una base para la topología producto de $X \times Y$

$$\mathfrak{B}=\left\{B_1\times B_2|B_1\in\mathfrak{B}_1,\;B_2\in\mathfrak{B}_2\right\}.$$

Demostración

i) Sea $(x, y) \in X \times Y$, luego $a \in X$, $b \in Y$, por lo tanto existe $B_1 \in \mathcal{B}_1$ y $B_2 \in \mathcal{B}_2$ de modo que:

$$x \in B_1$$
, $y \in B_2$, $(x, y) \in B_1 \times B_2$.

ii) Sean $B_1\times D_1, B_2\times D_2\in \mathfrak{B}$ y $(x,y)\in (B_1\times D_1)\cap (B_2\times D_2),$ entonces

$$(x,y)\in (B_1\cap B_2)\times (D_1\cap D_2)=(B_1\times D_1)\cap (B_2\times D_2),$$

luego $x \in B_1 \cap B_2$ y $y \in D_1 \cap D_2$, por lo tanto existen $B \in \mathcal{B}_1$ y $D \in \mathcal{B}_2$ de modo que $x \in B \subseteq B_1 \cap B_2$ e $y \in D \subseteq D_1 \cap D_2$. Tenemos:

$$(x,y) \in B \times D \subseteq (B_1 \cap B_2) \times (D_1 \cap D_2).$$

iii) Sea $U \in \mathcal{T}_1$, $V \in \mathcal{T}_2$ y $(\mathfrak{u}, \mathfrak{v}) \in U \times V$, luego existen $B_\mathfrak{u} \in \mathcal{B}_1$ y $D_\mathfrak{v} \in \mathcal{B}_2$ tal que $\mathfrak{u} \in B_\mathfrak{u} \subseteq U$ y $\mathfrak{v} \in B_\mathfrak{v} \subseteq V$, es decir:

$$(\mathfrak{u},\nu)\in B_{\mathfrak{u}}\times D_{\nu}\subseteq U\times V, \qquad U\times V=\underset{(\mathfrak{u},\nu)\in U\times V}{\cup}B_{\mathfrak{u}}\times D_{\nu}. \tag{1.1}$$

Luego, si W es un abierto en la topología producto, entonces

$$W = \bigcup_{i \in I} U_i \times V_i,$$

 $\mathrm{donde}\ U_i\in \mathfrak{T}_1\ \mathrm{y}\ V_i\in \mathfrak{T}_2.$

Por (1.1) se tiene que:

$$W = \bigcup_{i \in I} \left(\bigcup_{(u,v) \in U_i \times V_i} (B_{u,i} \times D_{v_i}) \right).$$

Esto prueba que todo abierto de la topología producto pertenece a la topología generada por ${\mathbb B}.$

Ejercicio 1.9 Sean (X, \mathcal{T}_1) e (Y, \mathcal{T}_2) dos espacios topológicos, se define:

$$\mathbb{S} = \left\{ X \times V | V \in \mathcal{T}_2 \right\} \cup \left\{ U \times Y | U \in \mathcal{T}_1 \right\}.$$

Demostrar que S es una sub-base para la topología producto de $X \times Y$.

Proposición 1.6 Sean (X_1, \mathcal{T}_1) e (X_2, \mathcal{T}_2) dos espacios topológicos.

Si F_i es cerrado en X_i , entonces, $F_1 \times F_2$, es cerrado en $X_1 \times X_2$.

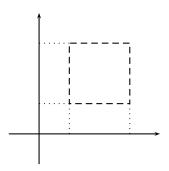
Demostración

Sea F_{i} cerrado en $\mathsf{X}_{\mathsf{i}},$ luego tenemos que $\mathsf{F}^{\mathsf{c}}_{\mathsf{i}}$ es abierto en X_{i}

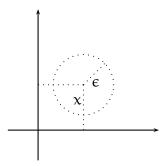
Pero $F_1^c \times X_2 \cup X_1 \times F_2^c = (F_1 \times F_2)^c$ es abierto, de lo cual $F_1 \times F_2$ es cerrado.

Observación 1.4

1. Sea \mathbb{R} con la topología usual, fabricamos \mathbb{R}^2 con la topología producto. Un elemento basal de \mathbb{R}^2 representa gráficamente un cuadrado



2. Sea $\mathbf{x} \in \mathbb{R}^2$ y $\mathbf{\varepsilon} > 0$. Consideremos $\mathbf{B}(\mathbf{x}, \mathbf{\varepsilon})$ como en el Ejercicio 1.4. Un elemento de esta forma representa graficamente una circunferencia de centro \mathbf{x} y radio $\mathbf{\varepsilon}$



Ejercicio 1.10 Demostrar que:

- 1. El conjunto de elementos $B(x,\varepsilon)$ es una base para una topología de \mathbb{R}^2 .
- 2. Las dos topologías anteriores de \mathbb{R}^2 son iquales.

1.4. Topología Reducida

Sea (X, \mathcal{T}) un espacio topológico, $Y \subseteq X$. Se desea definir una topología en Y. Consideremos la siguiente colección de subconjuntos de Y

$$\mathfrak{I}_Y = \left\{ \ U \cap Y | U \in \mathfrak{T} \ \right\} \subseteq \mathfrak{P}(Y).$$

Proposición 1.7 (Y, \mathcal{T}_Y) es una espacio topológico.

Demostración

i) Es fácil ver que $\emptyset, Y \in \mathcal{T}_Y$ ya que

$$\emptyset = \emptyset \cap Y, \qquad Y = X \cap Y.$$

ii) Sean $A,B\in \mathfrak{T}_Y,$ luego existen $U,V\in \mathfrak{T}$ de modo que

$$A = U \cap Y$$
, $B = V \cap Y$.

Por lo cual $A \cap B \in \mathcal{T}_Y$ ya que

$$A \cap B = U \cap Y \cap V \cap Y = (U \cap V) \cap Y, \qquad U \cap V \in \mathcal{T}.$$

iii) Sea $\{A_i\}_{i\in I}$ una familia de elementos en \mathfrak{T}_Y , entonces, existe $\{U_i\}_{i\in I}$ una familia de elementos en \mathfrak{T} de modo que $A_i=U_i\cap Y$ para todo $i\in I$. Sabemos que $\bigcup_{i\in I}U_i$ es un abierto en X, luego

$$\bigcup_{\mathfrak{i}\in I}A_{\mathfrak{i}}=\bigcup_{\mathfrak{i}\in I}(U_{\mathfrak{i}}\cap Y)=\left(\bigcup_{\mathfrak{i}\in I}U_{\mathfrak{i}}\right)\cap Y\in \mathfrak{T}_{Y}.$$

Por lo tanto (Y, \mathcal{T}_Y) es un espacio topológico.

Definición 1.6 Si Y tiene la topología reducida con respecto a X, diremos que Y es un subespacio de X.

Observación 1.5 Consideremos (X, T) un espacio topológico. Para todo $U \in T$, se tiene $U = U \cap X$, es decir, la topología reducida con respecto al subespacio X es igual a la topología inicial. Por lo tanto no hay confusión al denotar T por T_X como la topología sobre el espacio X.

Proposición 1.8 Sea (X, T) un espacio topológico e $Y \subseteq X$. Entonces, F es cerrado en Y, si y sólo si, $F = A \cap Y$, donde A es cerrado en X.

Demostración

 \Leftarrow) Sea A un cerrado en X y $F = A \cap Y$, probemos que F es cerrado en Y. Sabemos que $A^c \in \mathcal{T}$, entonces $A^c \cap Y \in \mathcal{T}_Y$, veamos ahora que $F^c = A^c \cap Y \in \mathcal{T}_Y$, tenemos que

$$(A \cap Y) \cap (A^c \cap Y) = A \cap A^c \cap Y = \emptyset \cap Y = \emptyset,$$

además, como $Y \subseteq Y \cup A^c, A \cup Y$, entonces

$$(A \cap Y) \cup (A^c \cap Y) = ((A \cap Y) \cup A^c) \cap ((A \cap Y) \cup Y),$$

$$= ((A \cup A^c) \cap (Y \cup A^c)) \cap ((A \cup Y) \cap (Y \cup Y)),$$

$$= X \cap ((Y \cup A^c) \cap (A \cup Y)) \cap Y,$$

$$= X \cap Y,$$

$$= Y.$$

Por lo tanto $F^c = A^c \cap Y \in \mathcal{T}_Y$, así F es cerrado en Y.

- \Rightarrow) Supongamos que F es cerrado en Y, es decir, $F^c \in \mathcal{T}_Y$, luego existe $U \in \mathcal{T}$ de manera que $F^c = U \cap Y$, consideremos $A = U^c$ un cerrado en X y probemos que $F = A \cap Y$
- \subset) Sea $x \in F \subseteq Y$, basta probar que $x \in A$. Como $x \in F = U^c \cup Y^c$, entonces $x \in U^c = A$, por lo tanto $F \subseteq A \cap Y$.
- ⊃) Sea $x \in A \cap Y$, luego $x \notin A^c = U$, entonces $x \notin U \cap Y = F^c$, por lo tanto $x \in F$, esto prueba que $A \cap Y \subseteq F$.

Por lo tanto
$$F = A \cap Y$$
.

1.5. Topología Cuociente o Final

Sea $f: X \to Y$ una función y (X, \mathcal{T}) un espacio topológico.

$$\mathfrak{T}_f = \{U \subset Y \quad : \quad f^{-1}(U) \in \mathfrak{T}\}$$

 $(Y,(\mathcal{T}_f))$ es un espacio topológico. Llamada Topología Final o Cuociente

Ejemplo 1.11 Sea $\mathbb{B} = \{\{0,1\},\{1,3\},\{2,4\}\}$ una base de la topología, del espacio topológico (X, \mathcal{T}) y el conjunto $\mathbb{Z}_3 = \{0,1,2\}$

Si $f: X \to \mathbb{Z}_3$, es la función modulo 3. Determine la topología cuociente de \mathbb{Z}_3 .

Ejemplo 1.12 Sea $I = [0, 1] \times [0, 1]$ y la relación de equivalencia dada por

$$(x,y) \sim (z,w) \Leftrightarrow \left\{ egin{array}{ll} (x,y) = (z,w) & & & \\ & x = z & & y = 0, w = 1 \\ & x = z & & y = 1, w = 0 \end{array} \right.$$

Sea la proyección $\mathfrak{p}:I\to I/\sim$. Luego la proyección define la topología cuociente en el cilindro.

Definición 1.7 Sea $f: X \to Y$ una función y(Y, T) un espacio topológico.

$$\mathfrak{T}_i = \{ f^{-1}(U) : U \in \mathfrak{T} \}$$

 $(X,(T_i))$ es un espacio topológico. Llamada Topología Inicial

1.6. Conjuntos Notables

Definición 1.8 Sea (X, T) un espacio topológico y $A \subseteq X$

1. El interior de A, denotado Å, se define como

$$\mathring{A} := \bigcup_{u \in \mathfrak{I}} u, \qquad \mathfrak{I} = \left\{ \ u \in \mathfrak{I} | u \subseteq A \ \right\}.$$

2. La adherencia de A, denotada por \overline{A} , se define como

$$\overline{A}:=\bigcap_{F\in\mathcal{J}}F,\qquad \mathcal{J}=\left\{\ F\subseteq X|A\subseteq F,\,F^c\in\mathfrak{T}\ \right\}.$$

3. La frontera de A, denotada por FrA, se define como

$$\operatorname{Fr} A = \overline{A} - \overset{\circ}{A}$$
.

Ejemplo 1.13

1. Sea $X = \{a, b, c, d\}$ $y \mathcal{T} = \{\emptyset, \{a\}, \{a, b\}, X\}$, el interior, la adherencia y la frontera del conjunto $A = \{b, c\}$ son:

$$\overset{\circ}{A}=\emptyset, \qquad \overline{A}=X\cap\{a\}^c=X\cap\{b,c,d\}=\{b,c,d\}, \qquad \operatorname{Fr} A=\{b,c,d\}.$$

2. Sea $X = [1, 2[\cup \{3\} \subseteq \mathbb{R} \ con \ la \ topología usual reducida. Determinemos el interior, la adherencia y la frontera del conjunto <math>A = \{1, 3\}$.

Primero veamos que $\{1\}$ no es abierto en X. Supongamos que $\{1\}$ puede escribirse como $U \cap X$ donde U es un abierto con la topología usual de \mathbb{R} , sabemos que

$$U = \bigcup_{i \in I} a_i, b_i[,$$

luego,

$$U \cap X = \left(\bigcup_{i \in I}]\alpha_i, b_i[\right) \cap X = \bigcup_{i \in I} \left(]\alpha_i, b_i[\cap X \right).$$

Entonces, existe $i_o \in I$ tal que $1 \in]a_{i_o}, b_{i_o}[$, además, como $]a_{i_o}, b_{i_o}[$ es un abierto en \mathbb{R} , existe $0 < \varepsilon < 1$ tal que

$$1 \in]1 - \epsilon, 1 + \epsilon[\subseteq] a_{i_o}, b_{i_o}[,$$

entonces $[1, 1 + \varepsilon[\subseteq X \cap] a_{i_o}, b_{i_o}[$, lo cual no puede ser, por lo tanto $\{1\}$ no es abierto en X.

Claramente $\{3\}$ es abierto en X, basta considerar U =]3 - 1/2, 3 + 1/2[abierto en \mathbb{R} , entonces

$$\{3\} = X \cap U.$$

Del mismo modo que $\{1\}$ probamos que $\{1,3\}$ no es abierto en X, luego $\stackrel{\circ}{A}=\{3\}$.

Veamos ahora que A es cerrado en X, sea U :=]1,2[abierto en $\mathbb{R},$ luego $U \cap X \in \mathfrak{T}_X,$ se tiene además

$$\{1,3\} = (\mathbf{U} \cap \mathbf{X})^{\mathbf{c}},$$

por lo tanto A es cerrado en X, así, $A = \overline{A}$. Por último

$$FrA = \{1, 3\} \setminus \{3\} = \{1\}.$$

3. Sea \mathbb{Z} con la topología de los subgrupos y $A = \{1, 3\}$, entonces claramente

$$\stackrel{\circ}{A} = \bigcup_{u \in \mathfrak{I}} u = \emptyset, \qquad \mathfrak{I} = \left\{ \ u \in \mathfrak{T}_{\mathfrak{B}} | u \subseteq A \ \right\}.$$

Como ejercicio verifique que

$$\overline{\mathbf{A}} = \bigcap_{\mathbf{F} \in \mathcal{J}} \mathbf{F} = \{-3, -1, 1, 3\}, \qquad \mathcal{J} = \left\{ \ \mathbf{F} \subseteq \mathbb{Z} | \mathbf{A} \subseteq \mathbf{F}, \ \mathbf{F^c} \in \mathfrak{T_B} \ \right\}.$$

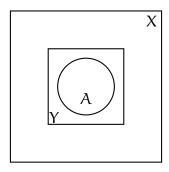
Proposición 1.9 Sea (X, T) un espacio topológico y $A \subseteq X$. Entonces

A es abierto, si y sólo si,
$$A = \overset{\circ}{A}$$
.

Demostración \Rightarrow) Sabemos que $\overset{\circ}{A} = \bigcup_{U \in \mathcal{I}} U$, pero $A \in \mathcal{I}$, luego $A \subseteq \overset{\circ}{A}$, además para todo $U \in \mathcal{I}$, $U \subseteq A$ entonces $\overset{\circ}{A} \subseteq A$. Por lo tanto $A = \overset{\circ}{A}$.

$$\Leftarrow$$
) Sabemos que $\mathfrak{I} \subseteq \mathfrak{I}$, luego $A = \bigcup_{u \in \mathfrak{I}} u \in \mathfrak{I}$. Por lo tanto A es abierto.

Proposición 1.10 Sea Y un subespacio de (X, T) y $A \subseteq Y$. Si \overline{A} es la clausura de A en X, entonces $\overline{A} \cap Y$ es la clausura de A en Y.



Demostración Sabemos que $\overline{A}=\bigcap_{F\in\mathcal{J}}F$ es la clausura de A en X. Por demostrar que

$$\overline{A} \cap Y = \bigcap_{K \in \mathcal{I}'} K =: B, \qquad \mathcal{J}' = \left\{ \ K \subseteq Y | K^c \in \mathfrak{T}_Y, \ A \subseteq K \ \right\}.$$

 \subset) Sea $x \in \overline{A} \cap Y$, entonces $x \in F$ para todo $F \in \mathcal{J}$. Probemos que $x \in B$, sea $K \in \mathcal{J}'$, entonces existe $U \in \mathcal{T}$ tal que $K^c = U \cap Y \in \mathcal{T}_Y$, luego

$$A \subseteq K = U^c \cup Y^c$$
.

Como $A \subseteq Y$ entonces $A \subseteq U^c \in \mathcal{J}$, por lo tanto $x \in U^c \subseteq U^c \cup Y^c = K$, para todo $K \in \mathcal{J}'$, así $x \in B$, es decir $\overline{A} \cap Y \subseteq B$.

⊃) Sea $x \in B$, es decir, $x \in K \subseteq Y$ para todo $K \in \mathcal{J}'$. Basta probar que $x \in \overline{A}$, para ello sea $F \in \mathcal{J}$, entonces $F^c \cap Y \in \mathcal{T}_Y$, luego $L = F \cap Y \in \mathcal{J}'$ entonces

$$x \in L, \qquad x \in Y,$$

por lo tanto $x \in F$ para todo $F \in \mathcal{J}$, luego $x \in \overline{A}$, así $B \subseteq \overline{A} \cap Y$.

Esto prueba que $\overline{A} \cap Y = B$.

Teorema 1.1 Sea $(X, \mathcal{T}_{\mathcal{B}})$ un espacio topológico y $A \subseteq X$, entonces:

- 1. $x \in \overline{A}$, si y sólo si, $(\forall U \in \mathfrak{T}) (x \in U \Rightarrow U \cap A \neq \emptyset)$.
- 2. $x \in \overline{A}$, si y sólo si, $(\forall B \in \mathcal{B}) (x \in B \Rightarrow B \cap A \neq \emptyset)$.

Demostración Tenemos:

1. \Leftarrow) Supongamos que $x \notin \overline{A}$, entonces existe $F \in \mathcal{J}$ tal que $x \notin F$, pero $A \subseteq F$, luego

$$U := F^c \in \mathfrak{T}, \qquad A \cap F^c = \emptyset, \qquad x \in F^c.$$

 \Rightarrow) Supongamos que existe $U \in \mathcal{T}$ de modo que $x \in U$ y $A \cap U = \emptyset$, entonces tenemos

$$A\subseteq U^c, \qquad x\not\in U^c.$$

Luego $U^c \in \mathcal{J}$, entonces $x \not\in \overline{A}$, ya que $A \subseteq \overline{A} \subseteq U^c$.

2. \Leftarrow) Supongamos que $x \not\in \overline{A}$, entonces existe $F \in \mathcal{J}$ tal que $x \not\in F$, pero $A \subseteq F$, luego

$$x \in F^c \in \mathcal{T}, \qquad A \cap F^c = \emptyset.$$

Como F^c es abierto, existe $B \in \mathcal{B}$ de modo que $x \in B \subseteq F^c$ y $A \cap B = \emptyset$.

 \Rightarrow) Supongamos que existe $B \in \mathcal{B}$ de modo que $x \in B$ y $A \cap B = \emptyset$, entonces tenemos

$$A\subseteq B^c, \qquad x\not\in B^c.$$

Luego $B^c \in \mathcal{J}$, entonces $x \notin \overline{A}$, ya que $A \subseteq \overline{A} \subseteq B^c$.

Definición 1.9 Sea $A \subseteq X$ y $x \in X$. Se dice que x es un punto de acumulación de A, si y sólo si,

$$(\forall U \in \mathfrak{T}) (x \in U \quad \Rightarrow \quad (U \cap A) \setminus \{x\} \neq \emptyset).$$

Notación 1.2 Denotemos por A' el conjunto de todos los puntos de acumulación de A.

Ejemplo 1.14 Sea X con la topología discreta y $A \subseteq X$. Entonces $A' = \emptyset$.

Ejemplo 1.15 Sea \mathbb{R} con la topología usual y $A = \{1/n | n \in \mathbb{N} \setminus \{0\}\}$. El único punto de acumulación de A es 0.

Proposición 1.11 Sea X un espacio topológico y $A \subseteq X$, entonces

$$\overline{A} = A \cup A'$$
.

Demostración

 \supset) Sabemos que A ⊆ \overline{A} . Veamos ahora que A' $\subset \overline{A}$,

$$\begin{split} x \in A' & \Leftrightarrow & (\forall U \in \mathfrak{T}) \, (x \in U \quad \Rightarrow \quad (U \cap A) \backslash \{x\} \neq \emptyset) \,, \\ & \Rightarrow & (\forall U \in \mathfrak{T}) \, (x \in U \quad \Rightarrow \quad U \cap A \neq \emptyset) \,, \\ & \Rightarrow & x \in \overline{A}. \end{split}$$

Por lo tanto $A \cup A' \subset \overline{A}$.

 \subset) Sea $x \in \overline{A}$, si $x \in A$ entonces $x \in A \cup A'$.

Ahora, si $x \not\in A$, es decir, $x \in \overline{A} \setminus A$, se tiene:

$$\begin{split} x \in \overline{A} \setminus A & \Leftrightarrow & (\forall U \in \mathfrak{T}) \, (x \in U \quad \Rightarrow \quad U \cap A \neq \emptyset) \,, \\ & \Rightarrow & (\forall U \in \mathfrak{T}) \, (x \in U \quad \Rightarrow \quad (U \cap A) \setminus \{x\} \neq \emptyset) \,, \\ & \Rightarrow & x \in A'. \end{split}$$

Por lo tanto $x \in A' \subseteq A \cup A'$.

1.7. Separación entre Puntos

En esta sección se abordara el problema de separar dos puntos por abiertos, los cual es una necesidad a tratar mas adelante la convergencia

Definición 1.10 Sea X un espacio topológico y $x \in X$. Se dice que U es una vecindad de x, si y sólo si, $U \in T$ y $x \in U$.

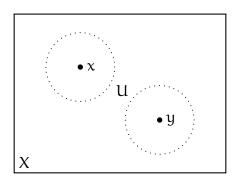
Si U es vecindad de x, es común anotar $U = U_x$.

Notación 1.3 El conjunto de todas las vecindades de un punto x se anota por $\mathcal{V}_X(x)$ o simplemente $\mathcal{V}(x)$, esto es:

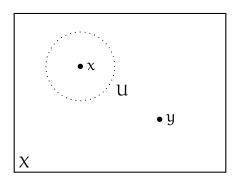
$$\mathcal{V}(x) = \left\{ \ U \in \mathfrak{I} | x \in U \ \right\}.$$

Observación 1.6 Si (X, T) es un espacio topológico, entonces $V \in T$, si y sólo si, para todo $x \in V$, existe $U_x \in \mathcal{V}(x)$ tal que $x \in U_x \subseteq V$.

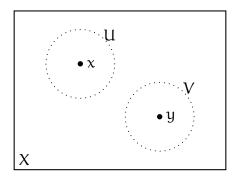
Definición 1.11 (Espacio T_0) Sea X un espacio topológico, se dice que X es T_0 (o que tiene la propiedad T_0) o espacio de Kolmogorov, si y sólo si, para todos $x,y \in X$ distintos, existe una U vecindad tal que $x \in U \land y \notin U$ o bien $x \notin U \land y \in U$.



Definición 1.12 (Espacio T_1) Sea X un espacio topológico, se dice que X es T_1 (o que tiene la propiedad T_1) o espacio de Fréchet, si y sólo si, para todos $x, y \in X$ distintos, existe una vecindad de uno que no contiene al otro.



Definición 1.13 (Espacio T_2 o Hausdorff) Se dice que un espacio topológico X es de Hausdorff o que tiene la propiedad T_2 , si y sólo si, para todos $x,y \in X$ distintos, existen $U,V \in \mathcal{T}$ tales que $x \in U$, $y \in V$ y $U \cap V = \emptyset$.



Es decir $U \in \mathcal{V}(x)$, $V \in \mathcal{V}(y)$ $y \ U \cap V = \emptyset$.

Ejemplo 1.16 1. Sea $X = \{a, b, c\}$ $y \mathcal{T} = \{\phi, X, \{b\}, \{b, c\}, \}$, entonces (x, \mathcal{T}) es un espacio T_0 , y no T_1

2. Sea $(\mathbb{N}, \mathcal{T}_{cf})$, topología del complemento finita, entonces un espacio $\mathsf{T}_0, \mathsf{T}_1$ y no T_2

Ejercicio 1.17 Determinar si los siguientes son espacios de Hausdorff

- 1. Z con la topología de los subgrupos.
- 2. \mathbb{R} con la topología del complemento finito.
- 3. \mathbb{R}^2 con la topología de Zariski.

Teorema 1.2 Sea X un espacio de Hausdorff. Entonces todo subconjunto finito de X, es cerrado.

Demostración Sea F un subconjunto finito de X, esto es:

$$F = \left\{ \begin{array}{l} x_1, x_2, \ldots, x_n \end{array} \right\} = \left\{ x_1 \right\} \cup \left\{ x_2 \right\} \cup \cdots \cup \left\{ x_n \right\}, \qquad (n \in \mathbb{N}).$$

Luego, basta probar que $\{x\}$ es cerrado para $x \in F$.

Si $X = \{x\}$, entonces $\{x\} = \emptyset^c$, luego $\{x\}$ es cerrado.

Si $X \neq \{x\}$, existe $y \in X \setminus \{x\}$. Como X es un espacio de Hausdorff, existen $U \in \mathcal{V}(x)$ y $V \in \mathcal{V}(y)$ tal que $V \subseteq X \setminus \{x\}$, por lo tanto $\{x\}^c$ es abierto. Luego $\{x\}$ es cerrado.

Por lo tanto
$$F$$
 es cerrado.

Corolario 1.1 Si X es finito y Hausdorff, entonces X tiene la topología discreta.

Teorema 1.3 Sea X un espacio de Hausdorff y $A \subseteq X$. Entonces, $x \in A'$, si y sólo si, todo abierto que contiene a x tiene infinitos puntos de A.

Demostración

 \Rightarrow) Sea $x \in A'$ y $U \in \mathcal{V}(x)$. Supongamos que U contiene finitos puntos de A, es decir:

$$A\cap U=\left\{\begin{array}{l} \chi_1,\chi_2,\ldots,\chi_n \end{array}\right\}=:B.$$

Por Teorema 1.2, $B\setminus\{x\}$ es un conjunto cerrado en X, luego $V:=(B\setminus\{x\})^c$, es un abierto en X, además, $U\cap V$ es también una vecindad de x, entonces

$$(A\cap U)\cap V=\left\{\begin{array}{l} x_1,x_2,\ldots,x_n \end{array}\right\}\cap V\subset \{x\}.$$

Luego $A \cap (U \cap V) \setminus \{x\} = \emptyset$. Por lo tanto $x \notin A'$, lo cual es una contradicción.

 \Leftarrow) Sea $U \in \mathcal{V}(x)$, entonces $A \cap U$ tiene infinitos puntos, por lo tanto

$$A \cap U \setminus \{x\} \neq \emptyset$$
.

Luego
$$x \in A'$$
.

Corolario 1.2 Si(X, T) es un espacio de Hausdorff y A un conjunto finito entonces $A' = \emptyset$.

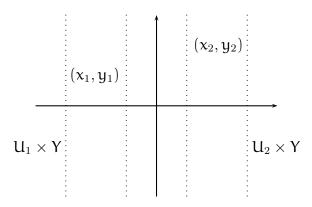
Proposición 1.12 Sea X, Y dos espacios Hausdorff, entonces X×Y con la topología producto es un espacio de Hausdorff.

Demostración Sean $(x_1, y_1), (x_2, y_2) \in X \times Y$ distintos, es decir $x_1 \neq x_2$ o $y_1 \neq y_2$, distingamos estos casos:

Caso 1: Si $x_1 \neq x_2$, como X es de Hausdorff, existen $U_1 \in \mathcal{V}(x_1)$ y $U_2 \in \mathcal{V}(x_2)$ disjuntos, además

$$(x_1,y_1)\in U_1\times Y, \qquad (x_2,y_2)\in U_2\times Y.$$

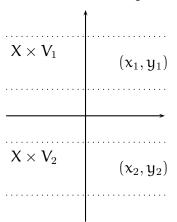
Si existiera $(x,y) \in (U_1 \times Y) \cap (U_2 \times Y)$ entonces $x \in U_1 \cap U_2$ lo cual no puede ser.



Caso 2: Si $y_1 \neq y_2$, como X es de Hausdorff, existen $V_1 \in \mathcal{V}(y_1)$ y $V_2 \in \mathcal{V}(y_2)$ disjuntos, además

$$(x_1,y_1)\in X\times V_2, \qquad (x_2,y_2)\in X\times V_2.$$

Si existiera $(x,y) \in (X \times V_1) \cap (X \times V_2)$ entonces $y \in V_1 \cap V_2$ lo cual no puede ser.



Por lo tanto $X \times Y$ es un espacio de Hausdorff

Observación 1.7 $\mathfrak{I}_{X\times Y}$ tiene como base la siguiente colección:

$$\left\{ \ U\times V|U\in \mathfrak{T}_X,\,V\in \mathfrak{T}_Y\ \right\}.$$

Proposición 1.13 Sea X un espacio de Hausdorff y $A \subseteq X$, entonces A es un espacio de Hausdorff con la topología relativa.

Demostración Sean $x, y \in A \subseteq X$, como X es un espacio de Hausdorff, existen $U \in \mathcal{V}(x)$ y $V \in \mathcal{V}(y)$ disjuntos, además,

$$x \in U \cap A$$
, $y \in V \cap A$.

Veamos la intersección

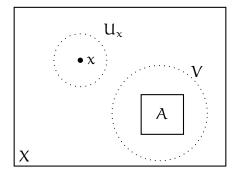
$$(U \cap A) \cap (V \cap A) = (U \cap V) \cap A,$$
$$= \emptyset \cap A,$$
$$= \emptyset$$

Por lo tanto (A, \mathcal{T}_A) es un espacio de Hausdorff.

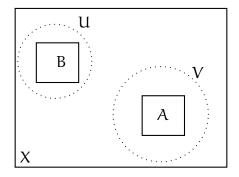
Teorema 1.4 Un subespacio de un espacio de T_i y el producto de espacios de T_i , son también espacios de T_i , con i=0,1,2.

1.8. Axiomas de Separación

Definición 1.14 (Espacio T_3 o Regular) Un espacio topológico X es regular si y sólo si es T_1 y para cada punto $x \in X$ y cualquier cerrado $F \subset X$ tal que x no pertenece a F. Entonces existes entornos U_x y U_F tales que su intersección es vacía. Es decir, podemos separar puntos de cerrados.



Definición 1.15 (Espacio T_4 o Normal) Un espacio topológico X es normal si y sólo si es T_1 y para cada par de cerrados $F_1, F_2 \subset X$ con intersección vacía existen unos entornos que los contengan U_{F_1} y U_{F_2} tal que su intersección sea vacía. Es decir, podemos separar todos los cerrados del espacio. En particular los espacios métricos son normales.



Definición 1.16 (Espacio T_5) Un espacio topológico X es T_5 si y sólo si es T_1 y para cada par $A, B \subset X$ tal que $\overline{A} \cap B = \varphi = A \cap \overline{B}$ existen unos entornos que los contengan U_A y U_B tal que su intersección sea vacía.

Proposición 1.14 Si X es un espacio topológico normal T_4 , entonces es regular T_3 .

Teorema 1.5 Un subespacio de un espacio de T_3 y el producto de espacios de T_3 , son también espacios de T_3 .

Demostración Sean $A\subseteq X,\,x\in A,F\subseteq A$ cerrado, luego existe G cerrado en X, tal que $F=G\cap A$ y $x\not\in G$.

Como X es un espacio T_3 , existen U_x y V_F abiertos y disjuntos, además,

$$x\in U, \qquad G\subseteq V_F.$$

es decir, $x \in U \cap A$, $F = G \cap A \subseteq V_F \cap A$. Veamos la intersección

$$(U \cap A) \cap (V \cap A) = (U \cap V) \cap A,$$

= $\emptyset \cap A,$
= \emptyset .

Por lo tanto (A, \mathcal{T}_A) es un espacio T_3 .

Sean X, Y, dos espacios topológicos T_3 , consideremos $(x,y) \in X \times Y, F \subseteq X \times Y$ cerrado, tal que $(x,y) \not\in F$. luego existe elemento basal $U \times V$ en la topología producto tal que $(x,y) \in U \times V \subseteq F^c$, es decir

$$(x,y) \not\in (U \times V)^c = U^c \times Y \cup X \times V^c$$

De lo cual, U^c es cerrado y no contiene a x, análogamente V^c es cerrado y no contiene a y.

Entonces existen U_x, V_1 abiertos disjuntos en X tales que $x \in U_x, U^c \subseteq V_1$, además existen U_y, V_2 abiertos disjuntos en Y tales que $y \in U_y, V^c \subseteq V_2$.

De lo cual obtenemos $(x,y) \in U_x \times U_y$, $F \subseteq V_1 \times Y \cup X \times V_2$, que son abiertos y disjuntos en $X \times Y$.

Proposición 1.15 Sea X un espacio topológico tal que todo singleton es cerrado. Entonces

- 1. X es regular, si y sólo si, para todo $x \in X$ y todo $U_x \in \mathcal{V}(X)$, existe $V_x \in \mathcal{V}(x)$ de modo que $x \in V_x \subseteq \overline{V}_x \subseteq U_x$.
- 2. X es normal, si y sólo si, para todo F cerrado de X y $U \in \mathcal{T}$ que contiene a F, existe $V \in \mathcal{T}$ de modo que $F \subseteq V \subseteq \overline{V} \subseteq U$.

Demostración Como $\{x\}$ es cerrado para todo $x \in X$ y por Observación 1.14, basta probar solamente la segunda parte del lema:

 $\Leftarrow) \ {\rm Sean} \ A, B \ {\rm cerrados} \ {\rm disjuntos} \ {\rm en} \ X, \ {\rm como} \ A^c \ {\rm es} \ {\rm abierto} \ y \ B \subseteq A^c, \ {\rm entonces} \ {\rm existe}$ $V_B \in {\mathfrak T} \ {\rm que} \ {\rm contiene} \ {\rm a} \ B \ {\rm tal} \ {\rm que} \ B \subseteq \overline{V}_B \subseteq A^c, \ {\rm entonces} \ A \subseteq \overline{V}_B^c, \ {\rm asi}$

$$A\subseteq \overline{V}^c_B\in \mathfrak{I}, \qquad B\subseteq V_B\in \mathfrak{I}, \qquad V_B\cap \overline{V}^c_B=\emptyset,$$

por lo tanto X es normal.

 \Rightarrow) Sea F un cerrado y U un abierto tal que F \subseteq U, entonces F \cap U^c = \emptyset y F, U^c son cerrados en X, pero X es normal, entonces, existen V, W \in T tal que

$$F \subseteq V$$
, $U^c \subseteq W$, $V \cap W = \emptyset$.

Notemos que $F\subseteq V\subseteq W^c\subseteq U$, luego $F\subseteq V\subseteq \mathring{W}\subseteq W^c\subseteq U$ además W^c es cerrado, luego

$$F\subseteq \overline{W^c}\subseteq U,$$

esto concluye la demostración.

1.9. Ejercicios Propuestos

- 1. Determinar todas las topologías de un conjunto de tres elementos
- 2. Sea X un conjunto y $p \in X$

$$\mathfrak{T} = \{A \in \mathbb{P}(X) \quad : \quad \mathfrak{p} \not\in A\} \cup \{X\}$$

 $\chi(X, \mathcal{T})$ es un espacio topológico?

3. Sea G un grupo

$$\mathfrak{T} = \{ H \in \mathbb{P}(G) : H \leqslant G \} \cup \{ \varphi \}$$

 $\chi(G, \mathcal{T})$ es un espacio topológico?

4. Sea X un conjunto y $A \subseteq X$. Demostrar que

$$\mathfrak{T} = \{B \in \mathbb{P}(X) : A \subset B\} \cup \{\phi\}$$

es una topología de X

5. Sea X un conjunto infinito

$$\mathfrak{I} = \{ A \in \mathbb{P}(X) : A^c \text{ es contable} \} \cup \{X\}$$

Aes contable si y sólo si Aes finito o existe $f:\mathbb{N}_0\to A$ biyectiva $\xi(X,\mathcal{T}) \text{ es un espacio topológico?}$

6. Sea $X = \{(x,y) \in \mathbb{R}^2 | y \ge 0\}$. Se define la bola de centro $(x,y) \in X$ y radio $\epsilon > 0$ como

$$B((x,y),\varepsilon) = \left\{ (u,v) \in X | (u-x)^2 + (v-y)^2 < \varepsilon^2 \right\}.$$

Probar que la siguiente colección es una base para una topología sobre X

$$\mathcal{B} = \{B((x, y), \varepsilon) | 0 < \varepsilon \leqslant y\} \cup \{\{(x, 0)\} | x \in \mathbb{R}\}.$$

7. Sea $X=\{(x,y)\in\mathbb{R}^2|y\geqslant 0\}$. Probar que la siguiente colección es una base para una topología sobre X

$$\mathcal{B} = \{B((x,y),\varepsilon) | 0 < \varepsilon \leqslant y\} \cup \{B_\varepsilon^x | x \in \mathbb{R}, \ \varepsilon > 0\},$$

$$\mathrm{donde}\ \mathcal{B}^{\kappa}_{\varepsilon} = \{(\mathfrak{u}, \mathfrak{v}) | (\mathfrak{u} - \kappa)^2 + \mathfrak{v}^2 < \varepsilon^2,\, \mathfrak{v} > 0\} \cup \{(\kappa, 0)\}.$$

8. Sea $X=\{(x,y)\in\mathbb{R}^2|y\geqslant 0\}$. Probar que la siguiente colección es una base para una topología sobre X

$$\mathcal{B}=\{B((x,y),\varepsilon)|0<\varepsilon\leqslant y\}\cup\left\{\dot{B}((x,y),y)|x,y\in\mathbb{R},\,y>0\right\},$$
 donde
$$\dot{B}((x,y),y)=B((x,y),y)\cup\{(x,0)\}.$$

9. Determinar si (X, \mathcal{T}) es un espacio topológico en los siguientes caso.

a)
$$X = \mathbb{N}, \mathcal{T} = \{X, \phi\} \cup \{\mathbb{J}_n = \{1, 2, ..., n\} : n \in \mathbb{N}\}$$

- b) X un conjunto $S_1 \subseteq S_2 \subseteq X, \mathfrak{T} = \{\phi, S_1, S_2, X\}.$
- c) $X = F([0,1],\mathbb{R}), \mathcal{T} = \{A \in \mathbb{P}(X) : \text{ existe } f \text{ continua } \text{tal } \text{que } f \in A\} \cup \{\phi\}$
- 10. Sea

$$\begin{array}{lcl} \mathfrak{T} &=& \{H_k &:& k\in\mathbb{R}\}\cup\{\mathbb{R}^2,\varphi\} \\ \\ \mathrm{con}\; H_k &=& \{(x,y)\in\mathbb{R}^2 &:& x>k\wedge y>k\} \end{array}$$

Demostrar que $(\mathbb{R}^2, \mathcal{T})$ es un espacio topológico.

11. Sea

$$\begin{array}{rcl} \mathfrak{T} &=& \{H_{r,s} &:& r,s \in \mathbb{R}\} \cup \{\mathbb{R}^2,\varphi\} \\ \\ \mathrm{con} \ H_{r,s} &=& \{(x,y) \in \mathbb{R}^2 &:& x > r \wedge y < s\} \end{array}$$

Determine si $(\mathbb{R}^2, \mathfrak{T})$ es un espacio topológico.

12. Sea $f: X \to Y$ una función y (X, \mathcal{T}) un espacio topológico

$$f(\mathfrak{I}) = \{f(U) : U \in \mathfrak{I}\} \cup \{Y\}$$

 $\mathcal{L}(Y, f(\mathfrak{I}))$ es un espacio topológico?

13. Sea $f: X \to Y$ una función y (Y, \mathcal{T}) un espacio topológico

$$\begin{split} f^{-1}(\mathfrak{T}) &=& \{V\subseteq X \quad : \quad (\exists U\in\mathfrak{T})(V=f^{-1}(U)\}; \\ f^{-1}(U) &=& \{x\in X \quad : \quad f(x)\in U\} \end{split}$$

Determine si $(X,f^{-1}(\mathfrak{I}))$ es un espacio topológico

14. Sea

$$\begin{split} \mathfrak{T} &= \; \{A_k \quad : \quad k \in \mathbb{N}_0\} \cup \{\mathbb{R}\left[x\right], \varphi\} \\ & \quad \operatorname{con} \, A_k &= \; \{p(x) \in \mathbb{R}[x] \quad : \quad \operatorname{deg}(p(x)) > k\} \end{split}$$

Determinar si $(\mathbb{R}[x], \mathcal{T})$ es un espacio topológico.

15. Sea

$$\begin{array}{lcl} \mathcal{B} &=& \{A_{r,s} &:& r,s \in \mathbb{N}_0\} \cup \{\mathbb{R}\left[x\right]\} \\ \\ \mathrm{con} \ A_{r,s} &=& \{p(x) \in \mathbb{R}[x] &:& r < \deg(p(x)) < s\} \end{array}$$

- a) Determinar si \mathcal{B} es un base de una topología de $\mathbb{R}[x]$.
- b) En caso afirmativo, Dado A = $\{x, x^3\}$ y B = $\{1, x\}$. Determinar Å, Ā, B, B.
- 16. Si x es un número real y n un número natural, se define

$$B_n^x = \{y \in \mathbb{R} | |x - y| < 1/n \quad \text{\'o} \quad y > n\}.$$

Demostrar que

- a) $\mathcal{B}=\{\mathcal{B}^{x}_{\mathfrak{n}}\mid x\in\mathbb{R}, \mathfrak{n}\in\mathbb{N}\}$ es base de una topología de $\mathbb{R}.$
- b) Comparar ésta con la topología usual.
- c) Hallar la adherencia de los conjuntos $A = \{x \in \mathbb{R} : x > 2\}$ y $B = \{x \in \mathbb{R} : x < 0\}$.
- 17. Sea $\mathfrak p$ un número primo impar, $\mathbb Z_{\mathfrak p}^{\times}$ con la topología dada por los subgrupos. Determinar $\mathring A, \bar A$ par los siguientes conjunto
 - a) $A = \{1, -1\}$
 - b) $A = \{1, 2\}$
- 18. En \mathbb{R} , con la topología formada por los conjunto de complemento finito. Determinar \mathring{A},\bar{A} par los siguientes conjunto

a)
$$A = [0, 1[$$

b)
$$A = J_n = \{s \in \mathbb{N}_0 : s \leqslant n\}.$$

- 19. En \mathbb{R} , con la topología débil o Sorgenfrey.(generada por los intervalos del tipo $[\mathfrak{a},\mathfrak{b}[)$ Determinar \mathring{A},\bar{A} para los siguientes conjuntos
 - a) A = [0, 1]
 - b) $A = J_{100} = \{ s \in \mathbb{N}_0 : s \leq 100 \}.$
- 20. Sea Y un subespacio de X, entonces demostrar que: un conjunto A es cerrado en Y si y sólo si $A=A_1\cap Y$, con A_1 es cerrado en X
- 21. Sea Y un subespacio de X. Si A es cerrado en Y y Y es cerrado en X entonces A es cerrado en X.
- 22. Sean $A,B,A_{\mathfrak{i}},$ subconjunto del espacio topológico X, para todo $\mathfrak{i}\in I.$ Demostrar que
 - $a) \ \bar{A} \cup \bar{B} = \overline{A \cup B}$
 - $b) \ \underset{\mathfrak{i} \in \mathcal{I}}{\cup} \overline{A_{\mathfrak{i}}} \subset \overline{\left(\underset{\mathfrak{i} \in \mathcal{I}}{\cup} A_{\mathfrak{i}}\right)}. \ \text{Dar un ejemplo donde la igual no es válida}.$
- 23. Sean $A,B,A_i,$ subconjunto del espacio topológico X, para todo $i\in I.$ Demostrar que
 - $a) \ \widehat{A \cap B} = \overset{\circ}{A} \cap \overset{\circ}{B}$
 - $b)\ \widehat{\left(\bigcap_{\mathfrak{i}\in I}\mathsf{A}_{\mathfrak{i}}\right)}\subset \bigcap_{\mathfrak{i}\in I}\widehat{\widehat{\mathsf{A}}_{\mathfrak{i}}}.\ \mathrm{Dar}\ \mathrm{un}\ \mathrm{ejemplo}\ \mathrm{donde}\ \mathrm{la}\ \mathrm{igual}\ \mathrm{no}\ \mathrm{es}\ \mathrm{v\'alida}.$
- 24. Si la frontera de A

$$\operatorname{Fr} A = \overline{A} \cap \overline{A^c}.$$

Demostrar que

- a) Fr $A = \overline{A} \overset{\circ}{A}$.
- b) Si $\overline{A} \cap \overline{B} = \emptyset$ entonces $Fr(A \cup B) = Fr(A) \cup Fr(B)$.
- 25. Sean (X, \mathcal{T}) , (Y, σ) dos espacios topológicos y $A \subseteq X$, $B \subseteq Y$. En $(X \times Y, \mathcal{T} \times \sigma)$ demostrar que

$$a) \ \widehat{A \times B} = \overset{\circ}{A} \times \overset{\circ}{B}$$

$$b) \ \overline{\mathbf{A} \times \mathbf{B}} = \bar{\mathbf{A}} \times \bar{\mathbf{B}}$$

c)
$$Fr(A \times B) = (\overline{A} \times Fr(B)) \cap (Fr(A) \times \overline{B})$$

26. En \mathbb{R}^2 con la topología usual, se define los siguientes conjuntos

$$A = [-1, 1] \times [-1, 1] - \{(x, x) | x \in [-1, 1]\} \qquad B = \left\{ \left(\frac{1}{n}, \frac{1}{n}\right) | n \in \mathbb{N}^* \right\}$$

Determinar el interior, la clausura, y la frontera de $A \cup B$

- 27. Sea (X, \mathcal{T}) un espacio topológico. Determine si las siguientes son verdadera o falsas justifique
 - $a) \ (\forall A, B \subset X) (\widehat{A \cup B} = \overset{\circ}{A} \cup \overset{\circ}{B})$
 - b) $(\forall A \subset X)(Fr(A) = \emptyset)$
 - c) Si \mathcal{B} es una base de \mathcal{T} y $\mathcal{U} \in \mathcal{T}$ entonces $\widetilde{\mathcal{B}} = \mathcal{B} \cup \{\mathcal{U}\}$ es una base para \mathcal{T}
 - d) Si $f:X\longrightarrow Y$ es continua, entonces $f(\overset{\circ}{A})=\stackrel{\circ}{\widehat{f(A)}}$
- 28. Sea (X, \mathcal{T}) un espacio topológico de Hausdorff y $A \subset X$ no vacío tal que $x \in A$.

Demostrar que

$$A' = (A - \{x\})'$$

- 29. Sea $\mathsf{GL}_2(\mathbb{R}) \hookrightarrow \mathbb{R}^2 \times \mathbb{R}^2$, con la topología producto. Determinar el interior y la clausura de $\mathsf{GL}_2(\mathbb{R})$.
- 30. Sea $\mathsf{SL}_2(\mathbb{R}) \hookrightarrow \mathbb{R}^2 \times \mathbb{R}^2$, con la topología producto. Determinar el interior y la clausura de $\mathsf{SL}_2(\mathbb{R})$.
- 31. Sea (X, \mathcal{T}_f) con la topología de complemento finito. Compare el espacio topológico $(X \times X, \mathcal{T}_f \times \mathcal{T}_f) \text{ con } (X \times X, \mathcal{T}_f')$
- 32. Sea $p: X \to Y$ una función epiyectiva y (X, \mathcal{T}) un espacio topológico.

$$\mathfrak{I}' = \{ U \in \mathbb{P}(Y) : f^{-1}(U) \in \mathfrak{I} \}$$

Demostrar que T'es una topología en Y, llamada topología cuociente.