Capítulo 5

Guías de Ejercicios

5.1. Guía Plano Afín

1. Sean V un \mathbb{K} -espacio vectorial de dimensión dos, $l_1, l_2 \in \mathcal{L}$, con

$$\begin{array}{rcl} l_1 & = & \left\langle \overrightarrow{v_1} \right\rangle + \overrightarrow{w_1} \\ l_2 & = & \left\langle \overrightarrow{v_2} \right\rangle + \overrightarrow{w_2} \end{array}$$

Demuestre que $l_1 \parallel l_2$, si y sólo si, $\langle \overrightarrow{v_1} \rangle = \langle \overrightarrow{v_2} \rangle$

2. Sean V un \mathbb{K} -espacio vectorial de dimensión dos, $B=\{\overrightarrow{v_1},\overrightarrow{v_2}\}$ base de V y las rectas dadas por

$$l_1 = \overrightarrow{v_1} + \overrightarrow{v_2} + \langle \overrightarrow{v_1} - \overrightarrow{v_2} \rangle$$

$$l_2 = 2\overrightarrow{v_1} + \langle \overrightarrow{v_1} + \overrightarrow{v_2} \rangle$$

Calcule $l_1 \cap l_2$.

3. Sean V un \mathbb{K} -espacio vectorial de dimensión dos, $B = \{\overrightarrow{v_1}, \overrightarrow{v_2}\}$ base de V.

Si
$$A = 2\overrightarrow{v_1} - 3\overrightarrow{v_2}$$
 y $B = 4\overrightarrow{v_1}$.

Determine la ecuación cartesiana de la recta l_{AB} .

4. Sean V un \mathbb{K} -espacio vectorial de dimensión dos, $B=\{\overrightarrow{v_1},\overrightarrow{v_2}\}$ base de V.

Si
$$2\overrightarrow{v_1} + \overrightarrow{v_2} \in m$$
 y $m \parallel l$ y $l = \overrightarrow{v_1} + \langle \overrightarrow{v_1} + 3\overrightarrow{v_2} \rangle$.

Determine la ecuación cartesiana de la recta m.

5. Sean V un \mathbb{K} -espacio vectorial de dimensión dos, $B = \{\overrightarrow{v_1}, \overrightarrow{v_2}\}$ base de V.

Si
$$A = \overrightarrow{v_1} + \overrightarrow{v_2}, C = \overrightarrow{v_1} - \overrightarrow{v_2}$$
 y $D = \overrightarrow{v_1}$.

Determine la ecuación cartesiana de la recta m respecto a la base B, tal que $m \parallel l_{AC}$ y $D\mathcal{I}m$.

- 6. Sea V un espacio vectorial de dimensión dos sobre \mathbb{K} , $B = \{\overrightarrow{v_1}, \overrightarrow{v_2}\}$ base de V. Sea l recta de ecuación y = 2x + 1 respecto a la base B, $t = 2\overrightarrow{v_1} + \overrightarrow{v_2} + \langle \overrightarrow{v_2} + 5\overrightarrow{v_1} \rangle$. Determine $l \cap t$.
- 7. Sea V un \mathbb{R} -espacio vectorial de dimension 2. sea $B = \{\overrightarrow{e_1}, \overrightarrow{e_2}\}$ base de V. Sea $A = \overrightarrow{e_1} + \overrightarrow{e_2}$, $B = \overrightarrow{e_1} \overrightarrow{e_2}$, $C = \overrightarrow{e_1} + 2\overrightarrow{e_2}$, $D = 3\overrightarrow{e_1} + \overrightarrow{e_2}$. Calcular $l_{AB} \cap l_{CD}$.
- 8. Sean A = (-1,3), B = (2,-7), C = (2,-1) y D = (4,5) puntos en el plano de Moulton,. Calcular $l_{AB} \cap l_{CD}$.
- 9. Sean A = (-3,5), B = (4,-2), C = (1,1) y D = (0,2) puntos en el plano de Moulton,. Calcular $l_{AB} \cap l_{CD}$.
- 10. Sean A = (-3,5), B = (-2,2), C = (-1,1) y D = (0,2) puntos en el plano de Moulton. Calcular:
 - a) $l_{AB} \cap l_{CD}$.
 - b) Determinar un punto E tal que $l_{AB} \parallel l_{CE}$.
- 11. Sean A = (1,2), B = (-2,3) y C = (1,1) puntos en el plano de Moulton. Determinar la ecuación de la recta m en el plano de Moulton que cumple con $m \parallel l_{AB}$ y $c\mathcal{I}m$.
- 12. Sean A = (1,2), B = (-1,-1) y C = (2,5) puntos en el plano de Moulton. Determinar la ecuación de la recta m en el plano de Moulton que cumple con $m \parallel l_{AB}$ y $c\mathcal{I}m$.
- 13. Sean A = (1,1) y B = (3,0) puntos en el plano \mathbb{R}^2 . Determine
 - a) La ecuación de la recta en el plano afín vectorial real que une A con B.
 - b) La ecuación de la recta en el plano afín de Moulton que une A con B.
- 14. Sean A = (1,2) y B = (3,5) puntos en el plano \mathbb{R}^2 .
 - Determine
 - a) La ecuación de la recta en el plano afín vectorial real que une A con B.
 - b) La ecuación de la recta en el plano afín de Moulton que une A con B.
- 15. Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$, tal que T(x,y) = (2x y + 1, x + y). Sea l = <(1,1) > +(2,3) en el plano afín vectorial. Calcule T(l).

16. Dada la recta de ecuación $l: \langle (2,3) \rangle + (0,1)$, en el plano vectorial real. Encuentre la ecuación de T(l), donde

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$(x,y) \rightsquigarrow (4x-2y+1,3x+2y-1)$$

17. Sea

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$(x,y) \rightsquigarrow (x+2y+1,3x-y+4)$$

Demuestre que T es una colineación en el plano afín vectorial real.

- 18. Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$, tal que T(x,y) = (2x + y + 1, x y + 6). Demostrar que T es una colineación del plano afín vectorial \mathbb{R}^2 .
- 19. Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$, tal que T(x,y) = (x+2,y+2). Demuestre que T no es una colineación en el plano de Moulton.
- 20. Sean A = (1,1), B = (-2,4) y C = (6,5) puntos en el plano de Moulton.
 - a) Determinar la ecuación de la recta m tal que $m \parallel l_{AB}$ y $c\mathcal{I}m$.
 - b) Determine el orden de $D = \{\overrightarrow{v} \in \mathbb{R}^2 \mid t_{\overrightarrow{v}}(l_{AB}) = m\}$, donde $t_{\overrightarrow{v}}$ es la traslación.
- 21. Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$, tal que T(x,y) = (2x+1,2y+5). Determinar los puntos y rectas fijas f.
- 22. Sea f una dilatación en el plano vectorial real tal que f(0,0) = (1,0), f(0,4) = (1,3). Determine f(x,y)
- 23. Sea T traslación en el plano vectorial real tal que T(3,1) = (1,2). Determine las trazas de T
- 24. Sea σ una homotecia en el plano vectorial real, tal que σ tiene razón tres y $\sigma(2,1)$ = (1,2). Determine las trazas de σ
- 25. Sea σ una homotecia del plano afín $\mathbb{F}_5 \times \mathbb{F}_5$. Si el centro de σ es (1,2) y $\sigma(2,1) = (3,-3)$. Determinar $\sigma(x,y)$.
- 26. Sea T una traslación del plano afín vectorial $V = \mathbb{F}_5^2$ tal que T(3,5) = (-1,7). Sea σ una homotecia de centro (8,7) y razón 2
 - a) Determine $(T \circ \sigma)(x, y)$
 - b) Calcular $(T^{-1} \circ \sigma^{-1} \circ T)(x,y)$

27. Determine $F \in D(\mathbb{R}^2)$ tal que $T \circ F = F \circ T$, en donde:

$$T: \quad \mathbb{R}^2 \rightarrow \mathbb{R}^2$$

$$(x,y) \rightsquigarrow (y,x) + (2,3)$$

28. Sea $\sigma \in \mathcal{D}(\mathbb{R}^2)$ tal que el centro de σ es (1,2) y $\sigma(1,3) = (1,6)$. Sea τ traslación que cumple con $\tau(1,0) = (0,1)$.

Calcular $\sigma \circ \tau \circ \sigma^{-1}(x,y)$

29. Sea $\sigma: \mathbb{R}^2 \to \mathbb{R}^2$ homotecia de centro (1,2) y razón 3. Sea $\tau: \mathbb{R}^2 \to \mathbb{R}^2$ traslación tal que $\tau(0,0) = (1,1)$.

Calcular $(\sigma \circ \tau \circ \sigma^{-1} \circ \tau^{-1})(x,y)$.

30. Sea $\tau: \mathbb{R}^2 \to \mathbb{R}^2$ traslación tal que $\tau(1,1) = (2,3)$. $\sigma: \mathbb{R}^2 \to \mathbb{R}^2$ homotecia de razón 3 y $\sigma(4,1) = (1,4)$.

Determinar las trazas de $(\tau \circ \sigma)$ en el plano afín ectorial.

- 31. Sean $\Pi = \mathbb{F}_{11} \times \mathbb{F}_{11}$ plano afín, $f \in D(\Pi)$, tal que f(6,9) = (3,3) y f(10,1) = (4,1)
 - a) Determine el conjunto de trazas de f
 - b) Se define $R = \{l \in \mathcal{L} \mid l \text{ es traza de } f\}$. Determine la cardinalidad de R
- 32. Sea $\sigma, \tau \in D(\mathbb{R}^2)$ tal que $\tau(1,3) = (2,2), \sigma(-2,0) = (-2,0)$ y $\sigma(1,-1) = (3,1)$.

Determine:

- a) $(\tau \circ \sigma^{-1} \circ \tau^{-1})(x,y)$
- b) Las trazas de $(\tau \circ \sigma^{-1} \circ \tau^{-1})$
- 33. Sean \mathbb{K} cuerpo y Π el plano afín vectorial, f la homotecia de centro \overrightarrow{v} y razón α y t traslación $t(\overrightarrow{0}) = \overrightarrow{u}$.

Calcule $(f \circ t \circ f^{-1} \circ t^{-1})(\overrightarrow{w})$

34. Sea $\Pi = \mathbb{R}^2$, $\sigma, \tau \in D(\mathbb{R}^2)$, tal que σ es homotecia de razón α y $\sigma(\overrightarrow{v}) = \overrightarrow{w}$ y τ traslación tal que $\tau(\overrightarrow{w}) = \overrightarrow{v}$.

Determine las rectas fijas y puntos fijos de $\sigma \circ \tau \circ \sigma^{-1} \circ \tau^{-1}$

- 35. Sea Π el plano afín, g traslación de Π y f colineación de Π .
 - a) Demuestre que $f^{-1} \circ g \circ f$ es una traslación de Π
 - b) Si [l] es la dirección de g. Determine la dirección de traslación $f^{-1} \circ g \circ f$
- 36. Sea \mathbb{F}_q cuerpo finito de q elementos, $\Pi = \mathbb{F}_q \times \mathbb{F}_q$ el plano afín vectorial, l una recta en Π . Si $H = \{ f \in D(\Pi) \mid f(l) = l \}$.

Calcule el orden de H

37. Sea \mathbb{F}_q cuerpo finito de q elementos, $\Pi = \mathbb{F}_q \times \mathbb{F}_q$ el plano afín vectorial, l_1, l_2 rectas de Π . Si $H = \{ f \in D(\Pi) \mid l_2, l_1 \text{ son traza de } f \}$.

Calcule el orden de H

38. Sea $\Pi = \mathbb{F}_{11} \times \mathbb{F}_{11}$ plano afín vectorial y $P \in \mathcal{P}, l \in \mathcal{L}$. Si $H = \{ f \in D(\mathbb{F}_{11}^2) \mid f(P) = P \land f(l) = l \}$. Calcule el orden de H

39. Sea $\Pi = \mathbb{F}_{31} \times \mathbb{F}_{31}$ espacio afín vectorial. $\sigma \in \mathcal{D}(\Pi)$ una homotecia de razón 2. y centro (1,1)

$$H = \{ f \in D(\Pi) \mid f \circ \sigma = \sigma \circ f \}.$$

Calcule el orden de H

40. Sea $\Pi = \mathbb{F}_q \times \mathbb{F}_q$. $\sigma \in \mathcal{D}(\Pi)$ una homotecia de razón -1. y centro (1,1)

$$H = \{ f \in D(\Pi) \mid f \circ \sigma = \sigma \circ f \}.$$

Calcule el orden de H

41. Sea $\Pi = \mathbb{F}_q \times \mathbb{F}_q$. $A, B \in \mathcal{P}$ distintos

$$X = \{ f \in D(\Pi) \mid f(A) = B \}.$$

Calcule el orden de X

- 42. Sea t una traslación de $\mathbb{F}_7 \times \mathbb{F}_7$ tal que t(1,2) = (1,0). Determinar σ dilatación tal que $\sigma \circ t \circ \sigma^{-1} = t$
- 43. Sea $\Pi = \mathbb{F}_5 \times \mathbb{F}_5$, y $H_{(1,2)}$ el grupo de homotecias de centro (1,2). Describir la tabla de $H_{(1,2)}$.
- 44. Sea $\Pi = (\mathcal{P}, \mathcal{L}, \mathcal{I})$ plano afín. Si $\sigma \in D(\Pi), t \in T(\Pi)$. Demuestre que $(\sigma \circ t \circ \sigma^{-1})$ es una traslación.
- 45. Sea $\Pi = (\mathcal{P}, \mathcal{L}, \mathcal{I})$ plano afín. Si $\sigma \in Aut(\Pi), t \in T(\Pi)$. Demuestre que $(\sigma \circ t \circ \sigma^{-1})$ es una traslación.
- 46. Sea Π plano afín, $\sigma \in D(\Pi)$, l recta de Π , $\sigma(l) = l$, $P \in \mathcal{P}$, $P\mathcal{IP}$ y $\sigma(P) = P$. Demostrar que $\sigma = Id$.
- 47. Sea $\Pi = (\mathcal{P}, \mathcal{L}, \mathcal{I})$ un plano afín de orden n. Sea $l \in \mathcal{L}$, recta fija. En \mathcal{P} se define la siguiente relación

$$A \sim B \Leftrightarrow l_{AB} \parallel l$$

- a) Demuestre que ~ es una relación de equivalencia.
- b) Determine el número de clases de equivalencia y cardinalidad de cada clase.
- 48. Sea \mathbb{K} cuerpo y la relación ~ sobre \mathbb{K}^2 plano afín vectorial dada por

$$\overrightarrow{u} \sim \overrightarrow{v} \Leftrightarrow \exists \sigma \in D(\mathbb{K}^2), \ \sigma(\overrightarrow{w}) = \overrightarrow{w}, \ \sigma(\overrightarrow{u}) = \overrightarrow{v}$$

- a) Demostrar que ~ es una relación de equivalencia.
- b) Describir las clases de equivalencias.
- 49. Sea \mathbb{K} cuerpo y la relación ~ sobre \mathbb{K}^2 plano afín vectorial dada por

$$\overrightarrow{u} \sim \overrightarrow{v} \Leftrightarrow \exists w \in \mathbb{K}^2, \ t_{\overrightarrow{w}}(\overrightarrow{u}) = \overrightarrow{v}$$

- a) Demostrar que ~ es una relación de equivalencia.
- b) Describir las clases de equivalencias.
- 50. Sea \mathcal{P} un conjunto de puntos con cardinal n^2 , con n > 1 y \mathcal{L} una colección de subconjuntos de \mathcal{P} tales que
 - a) Cada elemento de \mathcal{L} contiene n puntos
 - b) Si $P, Q \in \mathcal{P}$ distintos entonces existe única $l \in \mathcal{L}$ tal que $P, Q, \in l$

Demostrar que $(\mathcal{P}, \mathcal{L}, \epsilon)$ es un plano afín

- 51. Sea Π un plano afín. Demuestre que Π contiene al menos 3 hace de paralelas
- 52. \bigstar Sea $\Pi = \mathbb{F}_q^2$ el plano afín vectorial, P un punto, H_P el grupo de las homotecias de centro P.

$$\overrightarrow{u} \sim \overrightarrow{v} \Leftrightarrow \exists \sigma \in H_P, \ \sigma(\overrightarrow{u}) = \overrightarrow{v}$$

Calcule el número de clases y la cardinalidad de cada clases.

- 53. \bigstar Sea $\Pi = \mathbb{Z}_5 \times \mathbb{Z}_5$ plano afín vectorial. Calcular $|Aut(\Pi)|$.
- 54. \bigstar Sea $\Pi = \mathbb{F}_5 \times \mathbb{F}_5$ plano afín vectorial. Calcular $|D(\Pi)|$.
- 55. \bigstar Sea A, B, C, D puntos distintos del plano afín vectorial real tal que $l_{AB} \parallel l_{CD}$.
 - a) Demostrar que existe una única f dilatación tal que f(A) = C y f(B) = D.
 - b) Determine cuando f es homotecia y cuando f es traslación.
- 56. \bigstar Sea Π un plano afín $f \in Aut(\Pi)$, $g \in D(\Pi)$. Demostrar que $f \circ g \circ f^{-1} \in D(\Pi)$.
- 57. \bigstar Determinar todas las transformaciones lineales invertible de \mathbb{R}^2 , las cuales son colineación del plano de Moulton.

5.2. Guía Plano Proyectivos

- 1. Comprobar que los tres puntos $\langle (1,2,2) \rangle$, $\langle (3,1,4) \rangle$ y $\langle (2,-1,2) \rangle$ de $\mathbb{P}_2(\mathbb{R}^3)$ son colineales, y determinar una ecuación de la recta que pasa por ellos.
- 2. Sean $A = \langle (1,2,1) \rangle$, $B = \langle (1,1,1) \rangle$ puntos del plano $\mathbb{P}_2(\mathbb{R}^3)$. Determinar la ecuación cartesiana de l_{AB} .
- 3. Sean $A = \langle (3,2,1) \rangle, B = \langle (1,1,2) \rangle$ puntos del plano $\mathbb{P}_2(\mathbb{Z}_{19}^3)$. Determinar la ecuación cartesiana de l_{AB} .
- 4. Sean $A = (1,2,1) > B = (0,1,2) > C = (1,1,2) > D = (1,1,1) > \text{puntos del plano } \mathbb{P}_2(\mathbb{R}^3).$

Calcular $l_{AB} \cap l_{CD}$.

5. Sean $A = (1,0,1) > B = (0,1,1) > C = (1,0,2) > D = (1,1,0) > \text{ puntos del plano } \mathbb{P}_2(\mathbb{R}^3).$

Calcular $l_{AB} \cap l_{CD}$.

6. En el plano proyectivo $\Pi = \mathbb{P}_2(\mathbb{Z}_3^3)$. Sean $l_1 = (1,2,0), (0,1,1) > y$ l_2 la recta de ecuación 2x + y + z = 0.

Calcule $l_1 \cap l_2$.

7. En el plano proyectivo $\Pi = \mathbb{P}_2(\mathbb{Z}_5^3)$. Sean $l_1 = \langle (1,2,1), (2,0,1) \rangle$ y l_2 la recta de ecuación x + y + z = 0.

Calcule $l_1 \cap l_2$

- 8. Sean $A = \langle (1,2,1) \rangle$, $B = \langle (3,2,1) \rangle$, $C = \langle (1,\alpha,4) \rangle$ puntos del plano proyectivo $\mathbb{P}_2(\mathbb{R}^3)$. Determine α de modo que A,B,C sean colineales.
- 9. En el plano proyectivo $\mathbb{P}_2(\mathbb{R}^3)$. Hallar el punto de intersección de la recta r que pasa por los puntos <(3,1,-2) y <(1,-5,3) > y la recta de ecuación x-3y-4z=0.
- 10. En el plano proyectivo $\mathbb{P}_2(\mathbb{R}^3)$. Hallar la ecuación de la recta que pasa por el punto $\langle (1,2,-2) \rangle$ y el punto de corte de las rectas 2x-3y+7z=0 y 5x+2z=0.
- 11. En cada uno de los casos siguientes encontrar una ecuación de la recta del plano proyectivo complejo $\mathbb{P}_2(\mathbb{C})$ que pasa por los dos puntos dados:
 - a) < (-1,1,1) >, < (1,3,2i) >
 - b) < (1,-1,i) >, < (i,1,1) >
 - c) < (1,1,2i)>, < (1,-2,2i)>

12. Sea $\pi = \mathbb{R}^2$ el plano afín vectorial, la recta de ecuación l: y = 2x + 1 y $\overline{l} \in \mathbb{P}_2(\mathbb{R}^3)$ el sumergimiento de l.

Calcular la ecuación de \overline{l} .

- 13. Sea $\Pi = \mathbb{Z}_5 \times \mathbb{Z}_5$ el plano afín vectorial, los puntos A = (1,1), B = (2,1), C = (0,0) y D = (1,3) y $\overline{\Pi}$ el sumergimiento de Π . Si $\overline{A}, \overline{B}, \overline{C}, \overline{D}$ los puntos correspondientes en $\overline{\Pi}$. Calcular $l_{\overline{AB}} \cap l_{\overline{CD}}$.
- 14. Sean A = (-3, 5), B = (1, -4) puntos en el plano afín vectorial real y \overline{A} , \overline{B} los puntos que se obtiene al sumergir \mathbb{R}^2 en el plano proyecto $\mathbb{P}_2(\mathbb{R}^3)$.

Determinar la ecuación de la recta que une \overline{A} y \overline{B}

15. Sean $A = (1, \delta)$, $B = (\delta, 1)$ puntos en el plano afín vectorial $\mathbb{F}_4 = \mathbb{Z}_2(\delta)$ con $\delta^2 = \delta + 1$ y $\overline{A}, \overline{B}$ los puntos que se obtiene al sumergir \mathbb{F}_4^2 en el plano proyecto $\mathbb{P}_2(\mathbb{F}_4^3)$.

Determinar la ecuación de la recta que une \overline{A} y \overline{B} .

16. Sea V un espacio vectorial real y $\mathcal{B} = \{e_1, e_2, e_3\}$ una base.

Si A, B, C son tres puntos del plano proyectivo $\mathbb{P}_2(V)$ tal que

$$A = \langle xe_1 + ye_2 + e_3 \rangle$$
, $B = \langle e_1 + me_2 \rangle$, $C = \langle be_2 + e_3 \rangle$

Demostrar que $A \in l_{BC}$ si y sólo si y = mx + b

17. Sea l un recta en el plan afín vectorial \mathbb{Z}_7^2 y \overline{l} la correspondiente recta inducida en $\mathbb{P}_2(\mathbb{Z}_7^3)$ tal que su ecuación cartesiana es x - 2y + 3z = 0.

Determinar la ecuación cartesiana de l.

18. Sea $f: \mathbb{P}_2(\mathbb{R}^3) \to \mathbb{P}_2(\mathbb{R}^3)$, tal que $f(\langle (x,y,z) \rangle = \langle (x+y,x-y,z+x+y) \rangle$, se extiende de manera natural a los conjuntos.

Determine si f es una colineación en el plano proyectivo

19. Sea $f: \mathbb{P}_2(\mathbb{R}^3) \to \mathbb{P}_2(\mathbb{R}^3)$, $f(\langle (x, y, z) \rangle) = \langle (y, x, z) \rangle$ una colineación de plano proyectivo

Determine los puntos fijos de f.

20. Sea $f: \mathbb{P}_2(\mathbb{Z}^3_{11}) \to \mathbb{P}_2(\mathbb{Z}^3_{11}), f(\langle (x,y,z) \rangle) = \langle (3x-y,2x+y,2y-5z) \rangle$ una colineación de plano proyectivo.

Determinar los puntos fijos de f.

21. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$, con f(x, y, z) = (2x + y, 3y, z) una transformación lineal.

Si \overline{f} la colineación inducida por f en el plano proyectivo.

Determine los puntos fijos de \overline{f} si existe.

CAPÍTULO 5. GUÍAS DE EJERCICIOS

172

- 22. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$, f(x, y, z) = (x y, x + y, x + y z) una transformación lineal. Si \overline{f} la colineación inducida por f en el plano proyectivo. Determine los puntos fijos de \overline{f} .
- 23. Sea $f: \mathbb{Z}_5^3 \to \mathbb{Z}_5^3$, f(x, y, z) = (x + y, z, 2x + y) una transformación lineal. Si \overline{f} la colineación inducida por f en el plano proyectivo $\mathbb{P}_2(\mathbb{Z}_5^3)$. Determine los puntos fijos de \overline{f} .
- 24. Sea $g: \mathbb{Z}_{11}^3 \to \mathbb{Z}_{11}^3$, g(x, y, z) = (x, y, z) + (x + y + z)(1, 2, 1) transformación lineal. Si \overline{g} es la colineación inducida por g en $\mathbb{P}_2(\mathbb{Z}_{11}^3)$. Determinar los puntos fijos de \overline{g} .
- 25. Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$, con $f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$. Sea \overline{f} la colineación inducida por $f \in \mathbb{P}_2(\mathbb{R}^3)$. Determine los puntos fijos de \overline{f} .
- 26. Sea $f: \mathbb{F}^2_{11} \to \mathbb{F}^2_{11}$, tal que f(x,y) = (x+y,x-y) y \overline{f} la colineación inducida por f en $\mathbb{P}_2(\mathbb{F}^3_{11})$.

 Determine los puntos y rectas fijas de \overline{f} .
- 27. Sea $f: \mathbb{F}_q^2 \to \mathbb{F}_q^2$, tal que f(x,y) = (x+y,y) y \overline{f} la colineación inducida en $\mathbb{P}_2(\mathbb{F}_q^3)$. Determine los puntos fijos de \overline{f} .
- 28. En el plano proyectivo $\Pi = \mathbb{P}_2(\mathbb{R}^3)$, sea r la recta de ecuación 3x y + 2z = 0 y consideremos el plano afín $\Pi^r = \mathbb{P}_2(\mathbb{R}^3) \setminus r$.

 Hallar la ecuación de la recta afín que pasa por los puntos $\langle (1, 2, -3) \rangle$ y $\langle (2, 1, 5) \rangle$, respecto base canónica.
- 29. Sea $\sigma : \mathbb{F}^2 \to \mathbb{F}^2$, tal que $\sigma(x,y) = (x,x+y)$ y $\overline{\sigma}$ la colineación inducida por σ en $\mathbb{P}_2(\mathbb{F}^3)$. Demostrar que $(\exists l \in \mathcal{L})(\forall Q \in \mathcal{L} / \overline{\sigma}(l) = l)$
- 30. Demuestre que $\mathbb{P}_2(\mathbb{F}_q^3)$ es un plano proyectivo de orden q.
- 31. Demuestre que todo plano proyectivo tiene al menos 7 rectas.
- 32. Sea $\sigma: \mathbb{R}^2 \to \mathbb{R}^2$, con $\sigma(x,y) = (x,x+y)$, y $\overline{\sigma}$ la colineación inducida por σ en $\mathbb{P}_2(\mathbb{R}^3)$. Demostrar que existe l recta de $\mathbb{P}_2(\mathbb{R}^3)$, tal que $\forall Q \in l$, $\overline{\sigma}(Q) = Q$.
- 33. \bigstar Considere el plano afín $\Pi = (\mathbb{Z}_3^2, \mathcal{L}, \mathcal{I})$. Construir el plano proyectivo asociado $\overline{\Pi}$.

34. \bigstar Considere el cuerpo $\mathbb{F} = \mathbb{Z}_2(\delta)$ con $\delta^2 = \delta + 1$ y el plano proyectivo $\Pi = \mathbb{P}_2(\mathbb{F}^3)$. Dada la recta $l = \langle (1,0,0), (0,1,\delta) \rangle$.

Construir el plano afín asociado Π^l .

35. \bigstar Sea $T: \mathbb{F}_q^2 \to \mathbb{F}_q^2$, una traslación en el plano afín vectorial finito y \overline{T} la colineación inducida en $\mathbb{P}_2(\mathbb{F}_q^3)$.

Determine los puntos fijos de T y el número de rectas fijas.

- 36. \bigstar En $\mathbb{P}_2(\mathbb{F}_q^3)$ el plano proyectivo, sea H el grupo de las perspectividad de eje l_{∞} . Calcular el orden de grupo H.
- 37. \bigstar Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ una transformación lineal invertible, sea \overline{f} la colineación inducida por f en $\mathbb{P}_2(\mathbb{R}^3)$

Demuestre que \overline{f} tiene un punto fijo.

38. \bigstar Sea $\Pi = \mathbb{F}_q \times \mathbb{F}_q$, l recta del plano afín vectorial y G el grupo de las colineaciones de $\mathbb{P}_2(\mathbb{F}_q^3)$ inducido por el grupo de las traslaciones de traza l. Luego G opera sobre los puntos del plano proyectivo $\mathbb{P}_2(\mathbb{F}_q^3)$.

Determine el número de órbitas o clases y la cardinalidad de cada clase

39. \bigstar Sea $\Pi = \mathbb{F}_q \times \mathbb{F}_q$, y G el grupo de las colineaciones de $\mathbb{P}_2(\mathbb{F}_q^3)$ inducido por el grupo de las traslaciones de Π . Luego G opera sobre los puntos del plano proyectivo $\mathbb{P}_2(\mathbb{F}_q^3)$.

Determine el número de órbitas o clases y la cardinalidad de cada clase

5.3. Guía Planos Métricos

- 1. En \mathbb{R}^2 plano Euclidiano. Sean A = (-2, 6), B = (4, -4) y R_l la simetría de eje l. Encuentre:
 - a) La recta de tal manera que $R_l(A) = B$
 - b) Determine $R_l(x,y)$
- 2. En $\Pi = \mathbb{Z}_7^2$, plano métrico con $f((x_1, y_1), (x_2, y_2)) = x_1x_2 + y_1y_2$. Sean A = (5, 1), l la recta que une los puntos B = (1, 1) y C = (2, 4).
 - a) Determine la ecuación de la recta m, tal que $A\mathcal{I}m$ y $m \perp l_{BC}$
 - b) Determine $R_m(x,y)$
- 3. En $\Pi = \mathbb{Z}_{13}^2$, plano métrico con $f((x_1, y_1), (x_2, y_2)) = x_1x_2 2y_1y_2$. Si A = (5, 6), b = (-1, -3) y R la simetría tal que R(A) = B. Determine R(x, y)

- 4. En (\mathbb{Z}_{11}^2, f) plano Euclidiano, con $[f]_{\mathcal{B}} = \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}$, \mathcal{B} base de \mathbb{Z}_{11}^2 . Sean A = (2,3), B = (-1,5) y R_l simetría de eje l, tal que $R_l(A) = B$. Determine $R_l(x,y)$.
- 5. Sea Π plano métrico, $\sigma \in \operatorname{Aut}(\Pi)$, $l \in \mathcal{L}$. Demostrar que $\sigma \circ R_l \circ \sigma^{-1} = R_{\sigma(l)}$
- 6. En \mathbb{R}^2 plano métrico, sean P = (4, -3) y H_P la simetría puntual de centro P. Determine $H_P(x, y)$.
- 7. En $\mathbb{P}_2(\mathbb{R}^3)$ plano Elíptico. Hallar la intersección de las rectas l_1 y l_2 tal que l_1 une los puntos $\langle (2,3,1) \rangle$, $\langle (0,1,4) \rangle$ y l_2 tiene como polo al punto $\langle (6,5,-1) \rangle$.
- 8. Sea \mathbb{Z}_{13}^2 plano Euclidiano con $f((x_1, y_1), (x_2, y_2)) = x_1x_2 5y_1y_2$. Sea S la simetría tal que S(2,7) = (4,9). Determine S(8,1)
- 9. Sea \mathbb{R}^2 plano Euclidiano. Sea σ la rotación de centro (-1,1) y ángulo 30°. Determine $\sigma(x,y)$
- 10. Sea $f: \mathbb{C} \to \mathbb{C}$, $f(z) = cis\alpha \cdot z$, en donde $cis\alpha = \cos\alpha + i \cdot \sin\alpha$. Compruebe que f es una rotación de centro (0,0) y ángulo α en \mathbb{R}^2 .

Donde f esta dada por

$$\begin{pmatrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{pmatrix}$$

- 11. En el plano Elíptico $\mathbb{P}_2(\mathbb{R}^3)$, sean l la recta de ecuación x + 2y + z = 0 y P = <(-1, 1, -1) >. Determine los vértices y lados del triángulo polar si uno de los lados es l y un vértice P.
- 12. En el plano Elíptico $\mathbb{P}_2(\mathbb{R}^3)$, sean P = <(-1,2,3) > y l: 2x 4y 6z = 0. Determine los vértices y lados del triángulo polar que tiene como vértice al punto P y lado a la recta l.
- 13. En el plano Elíptico $\mathbb{P}_2(\mathbb{R}^3)$, sean l la recta de ecuación 2x + 4z = 0 y P = <(-2, 2, 1) >. Determine los vértices y lados del triángulo polar si uno de los lados es l y un vértice P.
- 14. En el plano Elíptico $\mathbb{P}_2(\mathbb{R}^3)$, sean $A = \langle (1,2,1) \rangle$, $B = \langle (0,1,1) \rangle$, $P = \langle (1,1,1) \rangle$. Determine la ecuación de la recta m tal que $P\mathcal{I}m$ y $m \perp l_{AB}$
- 15. Exprese $R_{(1,1)}, R_{\text{eje }X}, R_{\text{eje }Y}$ mediante números complejos.
- 16. Sea Π plano Elíptico. Demostrar que $R_a(P) = P'$, entonces $R_a \circ H_p \circ R_a = H_{P'}$

- 17. Sea Π plano Elíptico. Si $P\mathcal{I}a$, entonces $R_a\circ H_P=H_P\circ R_a$
- 18. En el plano Elíptico $\mathbb{P}_2(\mathbb{R}^3)$, sea $P = \langle (0,1,1) \rangle$
 - a) Determine $l \ y \ m$ tal que $l \perp m \ y \ l \cap m = \{P\}$
 - b) Calcule $H_P(\langle (x,y,z)\rangle)$
- 19. En el semiplano de Poincaré, sea P=(3,1) y l la recta de ecuación x=2. Determine la recta m tal que $P\mathcal{I}m$ y $m\perp l$
- 20. En el semiplano de Poincaré, sea l: x = 1, P = (2,3).

 Determine la ecuación de las paralelas hiperbólicas a l que pasan por P
- 21. En el semiplano de Poincaré, sean $l=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2=1,y>0\},\ m$ la recta de ecuación x=1.

Determine la ecuación de $R_l(m)$

- 22. En el semiplano de Poincaré, sean l:|z|=4 y P=3i. Determine la ecuación de m tal que $P\mathcal{I}m$ y $m\perp l$
- 23. En el semiplano de Poincaré, sea P = 1 + 2i. Calcule $H_P(z)$
- 24. En el semiplano de Poincaré. Sean l:|z|=5 y P=3i-4. Determine la ecuación de m tal que $P\mathcal{I}m$ y $m\perp l$
- 25. En el semiplano de Poincaré. Sean P = -1 + 3i y Q = 6 + 4i.
 - a) Determine la ecuación de m tal que PIm y QIm
 - b) Calcule $R_m(z)$.
- 26. Dado el semiplano de Poincaré:
 - a) Si t traslación a lo largo de la recta x = 5. Determine t(z) con $z \in \mathbb{C}$
 - b) Determine los elementos del grupo de rotaciones de centro i
- 27. ★ En Π plano métrico.

Demuestre que para todo $l \in \mathcal{L}$ y $P \in \mathcal{P}$ tal que $P\mathcal{I}l$ se tiene que $H_P(l) = l$.

28. \bigstar En Π plano métrico. Sean a, b, c rectas no concurrentes a un punto tales que $M\mathcal{I}u, v$; $A\mathcal{I}v, C\mathcal{I}u$ tal que $R_u(a) = u$ y $R_v(b) = c$.

Demuestre que existe w tal que $u \perp w$, $R_w(c) = (a)$ entonces $R_w = c$

5.4. Guía Espacios Afines

- 1. Sea (V,X) un espacio afín. Demostrar que $\forall \overrightarrow{a}, \overrightarrow{b} \in V, \forall x,y \in X$
 - a) $-\overrightarrow{xy} = \overrightarrow{yx}$

b)
$$(\overrightarrow{b} \cdot x)(\overrightarrow{b} \cdot y) = \overrightarrow{xy}$$

c)
$$\overrightarrow{a} \cdot x = y \Leftrightarrow x = (\overrightarrow{-a}) \cdot y$$

d)
$$\overrightarrow{(\overrightarrow{a} \cdot x)} (\overrightarrow{b} \cdot y) = -\overrightarrow{a} + \overrightarrow{xy} + \overrightarrow{b}$$

e)
$$\overrightarrow{xy} \cdot z = \overrightarrow{xz} \cdot y = (\overrightarrow{xy} + \overrightarrow{xz}) \cdot x$$

2. Sean $V = X = \mathbb{R}^3$

$$\pi = S((1,1,1), <(1,0,1), (1,2,1)>)$$

Determine la ecuación de π respecto sistema canónica.

3. Sean A = (1, 2, 3), B = (2, 3, 1), C = (3, 2, 1).

Determine la ecuación del plano que pasa por A,B,C respecto a la base canónica.

4. Sea
$$V = X = \mathbb{R}^4$$
. Determine la ecuación del subespacio afín respecto sistema canónica.

5. Sean
$$V = X = \mathbb{R}^3$$

$$S_1 = ((1,2,1), \langle (1,3,1) \rangle)$$
 y $S_2 = ((0,0,0), \langle (1,2,3), (1,0,4) \rangle)$.

 $\pi = S((1,0,2,1), < (0,1,0,1), (0,1,1,1) >)$

Determine la ecuación de las siguientes subespacios $S_1 \cap S_2$.

6. Sean $V = X = \mathbb{R}^3$

$$S_1 = S((1,1,1), \langle (1,0,1), (1,2,1) \rangle)$$
 y $S_2 = S((1,0,1), \langle (1,2,3), (3,0,1) \rangle)$.

Determine la ecuación de las siguientes subespacios $S_1 \cap S_2$

7. Sean $V = X = \mathbb{R}^4$

$$S_1 = S((1,0,1,1), \langle (1,2,1,1) \rangle) \vee S_2 = ((0,1,1,0), \langle (1,1,2,1) \rangle).$$

Determine la ecuación de las siguientes subespacios $S_1 \cap S_2$

8. Sean $V = X = \mathbb{R}^4$, S_1 y S_2 subespacios tales que

$$S_1 = S((1,2,3,0), \langle (1,3,0,1) \rangle)$$
 y $S_2 = S((0,0,0,1), \langle (0,2,3,4), (-1,1,6,7) \rangle)$

Determine:

- a) $S_1 \cap S_2$
- b) S_3 subespacio afín tal que $S_3 \parallel S_1$ y $S_3 \parallel S_2$
- 9. Sean $V = X = \mathbb{R}^3$ y π el hiperplano que contiene a los puntos (1, -1, 0), (3, -1, 1) y (0, 1, 1). Si l la recta que une los puntos (1, 4, 1) y (1, 2, 5).

Calcular $l \cap \Pi$

- 10. Sean $V = X = \mathbb{R}^3$, A = (1,2,1), B = (3,5,1), C = (1,3,2), D = (1,2,3), E = (2,1,3), l la recta que contiene los puntos A,B y π el plano que contiene los puntos C,D,E.

 Determinar si $l \parallel \pi$.
- 11. Sean $V = X = \mathbb{R}^3$, A = (1,2,1), B = (1,1,2), C = (2,1,1), D = (1,3,5) y π el plano que contiene los puntos A,B,C.

Determinar la ecuación respecto sistema canónica del plano que es paralelo a π y contiene a D.

12. Sean $V = X = \mathbb{R}^4$

$$\pi_1 = S((1,0,1,0), < (1,0,1,1), (1,0,0,0), (1,1,0,0) >)$$

Determine la ecuación de π_2 respecto a sistema canónica si

$$\pi_1 \parallel \pi_2 \land (1, 1, 1, 1) \in \pi_2$$

13. Sean $V = X = \mathbb{R}^3$, A = (1,2,3), B = (1,3,2), C = (2,3,1) y Π el plano que contiene los puntos A,B,C. Si $D = (1,4,5), E = (2,1,\alpha)$.

Determine α tal que $l_{ED} \parallel \Pi$

14. En $V = X = \mathbb{R}^3$, $B = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$ base de VSean $A = \overrightarrow{v}_1 - \overrightarrow{v}_2$, $B = \overrightarrow{v}_3 + 2\overrightarrow{v}_2$.

$$\pi = S(\overrightarrow{v_2}, \langle \overrightarrow{v_1} + \overrightarrow{v_2}, \overrightarrow{v_1} + \overrightarrow{v_3} \rangle).$$

Determine $L_{AB} \cap \pi$.

15. Se
aV un espacio vectorial de dimensión tres
. $B=\{\overrightarrow{v_1},\overrightarrow{v_2},\overrightarrow{v_3}\}$

$$S_1 = S(\overrightarrow{v_1}, \langle \overrightarrow{v_1} + \overrightarrow{v_2}, \overrightarrow{v_1} - \overrightarrow{v_3} \rangle) \text{ y } S_2 = (\overrightarrow{v_2}, \langle \overrightarrow{v_1} + \overrightarrow{v_2} + \overrightarrow{v_3} \rangle).$$

Determine $S_1 \cap S_2$.

16. En $V = X = \mathbb{R}^4$, $B = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}, \overrightarrow{v_4}\}$ base de V. Sean $S = S(\overrightarrow{v_1} + \overrightarrow{v}_2, \langle \overrightarrow{v_1} - \overrightarrow{v_2}, \overrightarrow{v}_3, \overrightarrow{v_1} + \overrightarrow{v_2} \rangle), \quad B_1 = \{\overrightarrow{v_1}, \overrightarrow{v_1} + \overrightarrow{v_2}, \overrightarrow{v_1} + \overrightarrow{v_2} + \overrightarrow{v_3}, \overrightarrow{v_1} + \overrightarrow{v_2} + \overrightarrow{v_3} + \overrightarrow{v_4}\}$

Determine la ecuación cartesiana de S respecto a $(\overrightarrow{0}, B_1)$.

- 17. Sean $V = X = \mathbb{R}^2$, $S((0,1), \langle (1,1) \rangle)$ y $B = \{(0,1), (1,0)\}$ base de V, con $x_0 = (2,1)$. Determine la ecuación de S en (x_0, B) .
- 18. Sean $V = X = \mathbb{R}^3$, $x_0 = (1,1,1)$ y $B = \{(1,0,1),(1,1,0),(0,1,1)\}$ base de VDetermine la ecuación de cartesiana de S((1,2,1),<(1,0,0,(2,0,1)>) respecto al sistema (x_0,B) .
- 19. Sean $V=X=\mathbb{R}^3$, y π una recta cuya ecuación es $2x-3=\frac{y}{2}=1-z$ respecto al sistema canónico.

Determine la ecuación de π respecto al sistema $((1,0,1),\{(1,2,3),(3,2,1),(0,1,0)\}$

20. En $V=X=\mathbb{R}^3,$ sea π un plano cuya ecuación con respecto al sistema canónico es x-y+2z=1

Determinar la ecuación de π respecto al sistema

$$x_0 = (1, 2, 1) \text{ y } B = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}.$$

21. Sea V un espacio vectorial y π hiperplano cuya ecuación es x+y+z=4 respecto a la base $B=\{\overrightarrow{v_1},\overrightarrow{v_2},\overrightarrow{v_3}\}.$

Determine la ecuación de π respecto a la base $\overline{B} = \{\overrightarrow{v_1} + \overrightarrow{v_2}, \overrightarrow{v_1} + \overrightarrow{v_3}, \overrightarrow{v_2} + \overrightarrow{v_3}\}.$

22. Sean (V, X) un espacio afín de dimensión tres, (x_0, B) un sistema de coordenadas de X. Sea S_1 subespacio de ecuación x - y + z = 4.

Determine la ecuación de $S_2 \parallel S_1$ y $(1,2,3) \in S_2$

23. En $V = X = \mathbb{R}^3$. sea $S((1,0,0), <(1,1,0), (0,0,1)>, <math>x_0 = (1,0,0)$.

Determinar una base B de <(1,1,0),(0,0,1)> tal que

$$[(2,1,1)]_{(x_0,B)} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad [(1,0,1)]_{(x_0,B)} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

24. En $V = X = \mathbb{R}^3$ un espacio afín. Sea $l = S((0,0,1), \langle (1,1,2) \rangle)$ recta respecto al sistema $(x_0, B), B = \{(1,1,1), (1,1,0), (1,0,0)\}$ base de V, con $x_0 = (0,0,0)$.

Sea Π el plano cuya ecuación cartesiana es 2x - 3y - 4z = 5 respecto al sistema (x_1, B_1) , con $x_1 = (3, 2, 1)$ y $B_1 = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$. Calcule $[l \cap \Pi]_{(x_1, B_1)}$

- 25. $f: \mathbb{C}^2 \to \mathbb{C}^2$ tal que $f(z, w) = (\overline{z}, \overline{w})$
 - a) Demostrar que f es una transformación semilineal.
 - b) Determinar todo los puntos de L(c, f) si c = (3, 1).
- 26. $f: \mathbb{C}^2 \to \mathbb{C}^2$ tal que $f(z, w) = (3\overline{z} \overline{w} + 1, \overline{z} + \overline{w} 1)$

- a) Demostrar que f es una transformación semilineal.
- b) Determinar todo los puntos.
- 27. En $V = X = \mathbb{R}^3$, sean $\sigma_1, \sigma_2 : \mathbb{R}^3 \to \mathbb{R}^3$ tales que σ_1 es una homotecia de razón 2 y centro (1,1,0) y σ_2 homotecia la cual se sabe

$$\sigma_2(1,1,1) = (3,3,3), \quad \sigma_2(1,0,1) = (3,0,3)$$

Determinar el centro y razón de $\sigma_1 \circ \sigma_2^2 \circ \sigma_1^{-1}$.

28. En (V,X) espacio afín, sean \overrightarrow{a} , $\overrightarrow{b} \in V$, $c \in X$ $r,s \in \mathbb{K}^*$ tales que Demostrar que

$$T_{\overrightarrow{a}} \circ M(c,r) \circ T_{\overrightarrow{b}} \circ M(c,s) = T_{\overrightarrow{a}+r\overrightarrow{b}} \circ M(c,rs)$$

29. En $V=X=\mathbb{R}^3$, sean $P_0=(1,0,1),\ P_1=(0,1,1),\ P_2=(1,0,0),\ P_3=(-1,1,2),\ Q_0=(1,2,1),\ Q_1=(-1,2,0),\ Q_2=(0,3,4),\ Q_3=(1,-2,5)$ y $\sigma:\mathbb{R}^3\to\mathbb{R}^3$ transformación afín tal que

$$\sigma(P_0) = Q_0, \ \sigma(P_1) = Q_1, \ \sigma(P_2) = Q_2, \ \sigma(P_3) = Q_3$$

Determine $\sigma(x, y, z)$.

30. Sea $S(x,\mathcal{U})$ y $S(y,\mathcal{U})$ dos subespacios afines. Demuestre que:

$$S(x,\mathcal{U}) \parallel S(y,\mathcal{U}) \Leftrightarrow \exists t \text{ traslación tal que } T(S(x,\mathcal{U})) = S(y,\mathcal{U})$$