Capítulo 4

Espacios Conexos o Compactos

4.1. Espacio Conexo

Una forma natural de construir nuevos espacios topológicos es pegando en forma disjunta, es decir. Sean $(X, \mathcal{T}_X), (Y, \mathcal{T}_Y)$ dos espacios topológicos, luego definimos

$$Z = X \times \{0\} \cup Y \times \{1\}$$

llamada unión disjunta, y definimos

$$\mathfrak{T}_Z = \{U \times \{0\} | U \in \mathsf{T}_X\} \cup \{V \times \{1\} | V \in \mathsf{T}_Y\}.$$

Es fácil demostrar que (Z, \mathcal{T}_Z) , es un espacio topológico. El proceso ante señalado se puede repetir indefinidamente. Por ello es de interés, identificar los espacios que no podemos construir de esta forma.

Definición 4.1 Sea (X, T) un espacio topológico. Se dice que X es separable, si y sólo si, existen $U, V \in T - \{\emptyset\}$ tal que

$$U \cap V = \emptyset$$
, $X = U \cup V$.

En este caso se dice que $\{U, V\}$ es una separación de X.

Definición 4.2 Un espacio topológico X se dice conexo, si y sólo si, no existe una separación de X.

Ejemplo 4.1

1. \mathbb{R} es conexo. Supongamos que existe una separación $\{U, V\}$ de \mathbb{R} .

$$\label{eq:sean_x_sea} \begin{split} \mathit{Sean} \ x \in U, \ y \in V \ \mathit{tal} \ \mathit{que} \ x > y, \ \mathit{entonces}, \ \mathit{existe} \ \alpha_x, b_x \in \mathbb{R} \ \mathit{tal} \ \mathit{que} \ x \in]\alpha_x, b_x[\subseteq U. \\ \mathit{Sea} \ I = \{x \in U | x > y\}, \ \mathit{luego} \ \mathit{es} \ \mathit{acotado} \ \mathit{y} \ \mathit{abierto} \ \mathit{ya} \ \mathit{que} \end{split}$$

$$I=\cup_{x\in I}]\alpha_x,b_x[,\qquad c=\inf I$$

Si $c \in U$, el cual es abierto, existe $\varepsilon > 0$ tal que $]c - \varepsilon, c + \varepsilon[\subseteq U$ lo cual es una contradicción ya que c es el ínfimo.

Si $c \in V$, el cual es abierto, existe $\varepsilon > 0$ tal que $]c - \varepsilon, c + \varepsilon [\subseteq V$ lo cual es una contradicción ya que c es el ínfimo.

Por lo tanto \mathbb{R} es conexo.

- 2. Demostrar que los únicos conjuntos conexos de \mathbb{R} son los intervalos
- 3. Claramente $\mathbb{R} \{0\} =]-\infty, 0[\stackrel{\cdot}{\cup}]0, \infty[$, por lo tanto $\mathbb{R} \{0\}$ no es conexo.

Proposición 4.1 Sea (X,T) un espacio topológico, entonces, las siguientes proposiciones son equivalentes:

- 1) X es conexo.
- 2) No existen dos conjuntos A, B ambos cerrados, no vacíos de X tales que:

$$X = A \cup B$$
, $A \cap B = \emptyset$.

- 3) Los únicos conjuntos abiertos y cerrados en X son X y \emptyset .
- 4) No existen dos subconjuntos A, B ambos no vacíos de X tales que:

$$X = A \cup B, \qquad (\overline{A} \cap B) \cup (A \cap \overline{B}) = \emptyset.$$

Demostración

1) \Rightarrow 2) Supongamos que existen A, B ambos cerrados en X tales que X = A $\stackrel{.}{\cup}$ B, entonces

$$A^c = B \in \mathcal{T}, \qquad B^c = A \in \mathcal{T},$$

lo cual no puede ser, ya que X es conexo.

- 2) \Rightarrow 3) Si $\emptyset \neq A \subsetneq X$ es abierto y cerrado, entonces A^c es abierto y cerrado, entonces $X = A \cup A^c$ con A y A^c cerrados en X lo cual no puede ser.
- $3) \Rightarrow 4)$ Supongamos que existen A, B no vacíos tales que

$$X = A \cup B$$
, $(\overline{A} \cap B) \cup (A \cap \overline{B}) = \emptyset$,

entonces

$$\overline{A} \cap B = \emptyset \quad \lor \quad A \cap \overline{B} = \emptyset.$$

esto es,

$$A \subseteq \overline{A} \subseteq B^c$$
, \vee $B \subseteq \overline{B} \subseteq A^c$.

Por lo tanto $A \cap B = \emptyset$, $A = \overline{A}$ y $B = \overline{B}$, lo cual es una contradicción ya que A y B son subconjuntos abiertos y cerrados de X.

(u,v) = 1 Supongamos que (u,v) = 1 Supongam

$$(\overline{U}\cap V)\cup (U\cap \overline{V})=(U\cap V)\cup (U\cap V)=U\cap V=\emptyset,$$

lo cual no puede ser.

Definición 4.3 Sea (X, T) un espacio topológico e $Y \subseteq X$.

Se dice que Y es conexo , si y sólo si, Y es conexo con la topología reducida.

Teorema 4.1 Sea (X, \mathfrak{T}) un espacio topológico e $Y \subseteq X$.

Si Y es conexo, entonces \overline{Y} es conexo.

Demostración Supongamos que Y es conexo, pero \overline{Y} no es conexo. Luego, existe $\{V_1,V_2\}$ una separación de \overline{Y} , esto es

$$\overline{Y} = V_1 \cup V_2, \qquad V_1 \cap V_2 = \emptyset, \qquad V_1, V_2 \in \mathfrak{T}_{\overline{V}},$$

entonces, existen $U_1, U_2 \in \mathcal{T}$ tales que

$$V_1 = U_1 \cap \overline{Y}, \qquad V_2 = U_2 \cap \overline{Y}.$$

Definamos $W_1 := U_1 \cap Y$ y $W_2 := U_2 \cap Y$, notemos lo siguiente:

$$W_1 \cap W_2 = U_1 \cap Y \cap U_2 \cap Y \subseteq U_1 \cap \overline{Y} \cap U_2 \cap \overline{Y} = \emptyset, \quad W_1, W_2 \in \mathfrak{T}_Y,$$

además.

$$Y = Y \cap \overline{Y},$$

$$= Y \cap (V_1 \cup V_2),$$

$$= (Y \cap V_1) \cup (Y \cap V_2),$$

$$= (Y \cap U_1 \cap \overline{Y}) \cup (Y \cap U_2 \cap \overline{Y}),$$

$$= (Y \cap U_1) \cup (Y \cap U_2),$$

$$= W_1 \cup W_2.$$

Además $V_1 = U_1 \cap \overline{Y}$, es no vacío, luego existe $x \in U_1$ y $x \in \overline{Y}$, es decir U_1 es una abierto que contiene a x y esta en la clausura luego $W_1 = U_1 \cap Y \neq \emptyset$, análogamente el otro conjunto es no vacío

Por lo tanto Y es disconexo, lo cual es una contradicción.

Corolario 4.2 Sean (X, T) un espacio topológico e $Y \subseteq S \subseteq \overline{Y} \subseteq X$.

Si Y es conexo, entonces S también es conexo.

Demostración Supongamos que S es disconexo, entonces, existen U,V abiertos disjuntos tales que $S\subseteq U\cup V$ e $Y\subseteq S$.

Pero Y es conexo, luego podemos suponer que $Y\subseteq U$ (de modo análogo si $Y\subseteq V$), entonces $Y\cap V=\emptyset$, por lo tanto $V\cap \overline{Y}=\emptyset$, lo cual es una contradicción, pues $\emptyset\neq V\subseteq S\subseteq \overline{Y}$.

Proposición 4.2 Sea (X, \mathcal{T}) un espacio topológico $y \in A, B \subseteq X$ conexos tales que $A \cap B \neq \emptyset$. Entonces $A \cup B$ es conexo.

Demostración Supongamos que $A \cup B$ es disconexo, es decir, existe $\{V_1, V_2\}$ una separación de $A \cup B$ y $U_1, U_2 \in \mathcal{T}$ de modo que

$$A \cup B = V_1 \stackrel{\cdot}{\cup} V_2$$
, $V_1 = U_1 \cap (A \cup B)$, $V_2 = U_2 \cap (A \cup B)$.

Luego, tenemos

$$A = (A \cup B) \cap A = (V_1 \cup V_2) \cap A = (V_1 \cap A) \cup (V_2 \cap A),$$
$$(V_1 \cap A) \cap (V_2 \cap A) = (V_1 \cap V_2) \cap A = \emptyset,$$

У

$$V_i \cap A = U_i \cap (A \cup B) \cap A = U_i \cap A, \quad i = 1, 2.$$

Entonces,

$$V_1 \cap A = \emptyset, \quad \vee \quad V_2 \cap A = \emptyset,$$

análogamente,

$$V_1 \cap B = \emptyset, \quad \vee \quad V_2 \cap B = \emptyset.$$

Claramente $V_i \cap A = \emptyset$ y $V_i \cap B = \emptyset$ para i = 1, 2, no puede ser, por lo tanto supongamos $V_i \cap A = \emptyset$ y $V_j \cap B = \emptyset$ con i, j = 1, 2 distintos, entonces

$$A\subseteq V_j, \qquad B\subseteq V_i, \qquad A\cap B\subseteq V_i\cap V_j=\emptyset,$$

lo cual es una contradicción.

Teorema 4.2 Sea (X, \mathfrak{T}) un espacio topológico $y\{U_i\}_{i\in I}$ una familia de subconjuntos conexos de X, tales que $U_i \cup U_j$ es conexo para todo $i, j \in I$. Entonces $\bigcup_{i \in I} U_i$ es conexo.

Demostración Sea $Y=\bigcup_{i\in I}U_i\subseteq X$ y supongamos que $\{B_1,B_2\}$ es una separación de Y, es decir

$$Y=B_1\cup B_2, \qquad B_1\cap B_2=\emptyset, \qquad B_1,B_2\in \mathfrak{T}_Y.$$

Consideremos $b_1 \in B_1$ y $b_2 \in B_2$, entonces existen $i, j \in I$ tales que $b_1 \in U_i$ y $b_2 \in U_j$, además existen $A_1, A_2 \in \mathcal{T}$ de modo que $B_1 = A_1 \cap Y$ y $B_2 = A_2 \cap Y$. Definamos en $\mathcal{T}_{U_i \cup U_j}$ los siguientes conjuntos:

$$\emptyset \neq C_1 := A_1 \cap (U_i \cup U_i), \qquad \emptyset \neq C_2 := A_2 \cap (U_i \cup U_i).$$

Notemos ahora lo siguiente:

$$C_1 \cap C_2 = (A_1 \cap A_2) \cap (U_i \cup U_i) \subseteq A_1 \cap A_2 \cap Y = \emptyset \cap Y = \emptyset,$$

У

$$C_{1} \cup C_{2} = (A_{1} \cap (U_{i} \cup U_{j})) \cup (A_{2} \cap (U_{i} \cup U_{j})),$$

$$= (A_{1} \cup A_{2}) \cap (U_{i} \cup U_{j}),$$

$$= (A_{1} \cup A_{2}) \cap (Y \cap (U_{i} \cup U_{j})),$$

$$= ((A_{1} \cup A_{2}) \cap Y) \cap (U_{i} \cup U_{j}),$$

$$= ((A_{1} \cap Y) \cup (A_{2} \cap Y)) \cap (U_{i} \cup U_{j}),$$

$$= Y \cap (U_{i} \cup U_{j}),$$

$$= U_{i} \cup U_{i}.$$

Lo cual es una contradicción, pues $U_i \cup U_i$ es conexo.

Teorema 4.3 Sea $f: X \to Y$ una función continua $y \times X$ un espacio conexo, entonces f(X) es conexo.

Demostración Supongamos que f(X) no es conexo, entonces existe $\{U_1, U_2\}$ una separación de $f(X) \subseteq Y$, luego, existen $V_1, V_2 \in \mathcal{T}_Y$ de modo que

$$U_1=V_1\cap f(X), \qquad U_2=V_2\cap f(X).$$

Para i = 1, 2 se tiene lo siguiente:

$$\begin{split} f^{-1}(U_i) &= \left\{ \begin{array}{l} x \in X | f(x) \in U_i \end{array} \right\}, \\ &= \left\{ \begin{array}{l} x \in X | f(x) \in V_i \cap f(X) \end{array} \right\}, \\ &= \left\{ \begin{array}{l} x \in X | f(x) \in V_i \end{array} \right\} \cap \left\{ \begin{array}{l} x \in X | f(x) \in f(X) \end{array} \right\}, \\ &= \left\{ \begin{array}{l} x \in X | f(x) \in V_i \end{array} \right\} \cap \left\{ \begin{array}{l} x \in X | f(x) \in f(X) \end{array} \right\}, \\ &= \left\{ \begin{array}{l} x \in X | f(x) \in V_i \end{array} \right\} \cap X, \\ &= \left\{ \begin{array}{l} x \in X | f(x) \in V_i \end{array} \right\}, \\ &= f^{-1}(V_i) \in \mathfrak{T}_X, \end{split}$$

además, como $U_i \neq \emptyset$, entonces existe $y_i \in V_i \cap f(X)$, luego existe $x_i \in X$ de modo que $f(x_i) = y_i$, por lo tanto $f^{-1}(U_i) \neq \emptyset$.

Si $x \in f^{-1}(U_1) \cap f^{-1}(U_2)$, entonces $f(x) \in U_1 \cap U_2 = \emptyset$ pues $\{U_1, U_2\}$ es una separación, luego $f^{-1}(U_1) \cap f^{-1}(U_2) = \emptyset$. Claramente $f^{-1}(U_1) \cup f^{-1}(U_2) \subseteq X$, además, si $x \in X$, entonces $f(x) \in f(X) = U_1 \stackrel{\cdot}{\cup} U_2$, luego

$$f(x) \in U \quad \forall \quad f(x) \in V \qquad \Leftrightarrow \qquad x \in f^{-1}(U_1) \quad \forall \quad x \in f^{-1}(U_2),$$

por lo tanto $X=f^{-1}(U_1)\stackrel{.}{\cup} f^{-1}(U_2)$. Así $\{f^{-1}(U_1),f^{-1}(U_2)\}$ es una separación de X, lo cual es una contradicción, pues X es conexo. \Box

Ejemplo 4.2 La función $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ es continua, luego \mathbb{R}_0^+ es conexo La función $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \arctan \operatorname{tg}(x)$ es continua, luego $] - \frac{\pi}{2}, \frac{\pi}{2}[$ es conexo.

Note que la función definida por parte

$$f(x) = \begin{cases} 1 - x & \text{si} \quad x \leq 1 \\ x & \text{si} \quad x \geq 2 \end{cases}$$

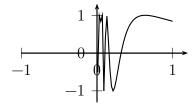
es continua, su recorrido es conexo, pero el dominio, que es la imagen inversa del recorrido no es conexo.

Corolario 4.3 Sea $f: X \to Y$ una función continua $y \ X$ un espacio conexo, entonces $\Gamma_f = \{(x, f(x) \in X \times Y | x \in X\} \text{ es conexo en } X \times Y \text{ con la topología producto.}$

Ejemplo 4.3 Por corolario anterior tenemos que

$$A = \{(x, \operatorname{sen}(\frac{1}{x})) | x \in \mathbb{R}^+ \}$$

es conexo en \mathbb{R}^2 .



Además note que

$$(0, \operatorname{sen}(\mathfrak{a})) = \lim_{n \to \infty} (\frac{1}{\mathfrak{a} + 2n\pi}, \operatorname{sen}(\mathfrak{a} + 2n\pi))$$

luego

$$B=\{(x,\operatorname{sen}(\frac{1}{x}))|x\in\mathbb{R}^+\}\cup\{(0,y)|y\in[-1,1]\}\subseteq\overline{A},$$

es conexo.

Note que el conjunto B es union disjunta de dos conjuntos conexo y el cual es conexo.

Ejemplo 4.4 Sea $f:[0,1] \rightarrow [0,1]$ una función continua.

Demuestre que existe un punto fijo

Por el corolario anterior sabemos que $\Gamma_f = \{(x, f(x) \in [0, 1] \times [0, 1] | x \in [0, 1]\}$ es conexo, supongamos que no existe p tal que $f(p) \neq p$. Luego f(0) > 0 y f(1) < 1, entonces se define los conjuntos abiertos

$$H = \{(x, y) \in \mathbb{R} | x > y\}; \quad G = \{(x, y) \in \mathbb{R} | x < y\}$$

y se tiene que

$$(0, f(0)) \in H \cap f([0, 1]) \neq \phi; \quad (1, f(1)) \in G \cap f([0, 1]) \neq \phi.$$

Además

$$\Gamma_f = (\mathsf{H} \cap \mathsf{f}([0,1])) \stackrel{\cdot}{\cup} (\mathsf{G} \cap \mathsf{f}([0,1]))$$

por lo tanto $\Gamma_{\rm f}$ no es conexo, lo que es una contradicción.

Teorema 4.4 Sean X, Y dos espacios conexos, entonces X × Y también lo es.

Demostración Sea $(x_o, y_o) \in X \times Y$, definimos las siguientes funciones:

Ya que f_{y_o} es continua por coordenada es continua, es decir, $X \times \{y_o\}$ es conexo. Por otro lado

También g_{x_o} es continua, luego, $\{x_o\}\times Y$ es conexo.

En forma directa veamos la continuidad

$$(U \times V) \cap (X \times \{y_o\}) = U \times V \cap \{y_o\}; \quad (U \times V) \cap (\{x_o\} \times Y) = \{x_o\} \cap U \times V$$

además, si $U \times V = \bigcup_{i \in I} (U_i \times V_i)$, entonces

$$\begin{split} (U\times V)\cap (X\times \{y_o\}) &= \left(\bigcup_{i\in I} (U_i\times V_i)\right)\cap (X\times \{y_o\}) \\ &= \bigcup_{i\in I} ((U_i\times V_i)\cap (X\times \{y_o\})) \\ &= \bigcup_{i\in I} (U_i\times \{y_o\}) \\ &= \left(\bigcup_{i\in I} U_i\right)\times \{y_o\} = U'\times \{y_o\}. \end{split}$$

Análogamente

$$(\mathsf{U} \times \mathsf{V}) \cap (\{\mathsf{x}_{\mathsf{o}}\} \times \mathsf{Y}) = \{\mathsf{x}_{\mathsf{o}}\} \times (\cup_{\mathsf{i} \in \mathsf{I}} \mathsf{V}_{\mathsf{i}}) = \{\mathsf{x}_{\mathsf{o}}\} \times \mathsf{V}'.$$

Claramente $f_{y_o}^{-1}((x,y_o)) = x$ y $g_{x_o}^{-1}((x_o,y)) = y$, luego, tenemos

$$f_{y_o}(U) = U \times \{y_o\}, \quad f_{y_o}^{-1}(U \times \{y_o\}) = U, \quad g_{x_o}(V) = \{x_o\} \times V, \quad g_{x_o}^{-1}(\{x_o\} \times V) = V,$$

por lo tanto f_{y_o} , g_{x_o} son homeomorfismos. Así, se tiene que $X \times \{y_o\}$ y $\{x_o\} \times Y$ son espacios conexos.

Además $X \times \{y_o\} \cap \{x_o\} \times Y = \{(x_o, y_o)\}$, no vacío, luego $A_{(x_o, y_o)} = X \times \{y_o\} \cup \{x_o\} \times Y$ es conexo

Por otro lado $A_{(a,b)}\cap A_{(c,d)}=\{(a,d),(b,c)\}$. Es decir la unión es conexa, por Teorema 4.2

Finalmente

$$X \times Y = \bigcup_{(a,b) \in X \times Y} A_{(a,b)}$$

Es conexo.

Ejemplo 4.5 $\mathbb{R}^{n+1} = \mathbb{R} \times \mathbb{R}^n$ es conexo, para todo $n \in \mathbb{N}$

4.1.1. Componente Conexa

Se define la siguiente relación en el espacio topológico X,

$$x \sim y \quad \Leftrightarrow \quad (\exists A \subseteq X, \text{ conexo})(x, y \in A),$$
 (4.1)

Note que es una relación de equivalencia en X, ya que es refleja debido que los singleton son conexo, es fácil ver la simétrica y es transitiva por la propiedad 4.2

Si denotamos por O_x la clase de $x \in X$ entonces tenemos entonces

$$X = \bigcup_{x \in R} O_x$$

Observación 4.1

- 1. Por Teorema 4.1, tenemos que $O_x = \overline{O}_x$.
- 2. Si $x \in A \subseteq X$, con A conexo, entonces $A \subseteq O_x$.
- 3. Si X es finito, entonces O_x es abierto y cerrado para todo $x \in X$.

Definición 4.4 Sea X un espacio topológico.

Una componente conexa en X es un subconjunto conexo maximal de X.

Ejemplo 4.6

- 1. \mathbb{R} tiene una sola componente conexa, \mathbb{R} .
- 2. $\mathbb{R}\setminus\{0\}$ tiene dos componentes conexas, $\mathbb{R}^+, \mathbb{R}^-$.

4.2. Espacios Conexos por Caminos

Definición 4.5 Sea X un espacio topológico y $x, y \in X$.

Se dice que $f:[0,1] \to X$ es un camino de x a y, si y sólo si, f es continua tal que f(0) = x, f(1) = y.

Si f es un camino de x a y lo denotaremos por $f_{x,y}$

Definición 4.6 Sea X un espacio topológico.

Se dice que X es conexo por caminos, o arcoconexo si y sólo si, existe un camino para todo par de puntos en X.

Ejemplo 4.7

1. El espacio \mathbb{R}^n es conexo por caminos, mediante:

$$f_{x,y}:[0,1]\to\mathbb{R}^n, \quad f_{x,y}(t):=(1-t)x+ty,$$

donde $x, y \in \mathbb{R}^n$, $0 \le t \le 1$.

2. La circunferencia $S^1 := \left\{ \ x \in \mathbb{R}^2 | \|x\| = 1 \ \right\}$ es conexo por caminos, mediante:

$$f_{x,y}:[0,1]\to S^1, \quad f_{x,y}(t):=(\cos((1-t)\theta_1+t\theta_2), \sin((1-t)\theta_1+t\theta_2)),$$

donde $\mathbf{x} = (\cos(\theta_1), \sin(\theta_1)) \ e \ \mathbf{y} = (\cos(\theta_2), \sin(\theta_2)).$

Proposición 4.3 Todo espacio conexo por caminos es conexo

Demostración Sea (X, \mathcal{T}) un espacio conexo por camino, luego para todo $x, y \in X$, existe una función continua $f_{x,y} : [0,1] \to X$ tal que $f_{x,y}(0) = x$, $f_{x,y}(1) = y$, como [0,1] es conexo luego $\text{Recf}_{x,y}$ es conexo, teorema 4.3, y como

$$X=\cup_{y\in X}\mathrm{Rec}f_{x,y}$$

es conexo por teorema 4.4, ya que es union de conexo con $\mathsf{Recf}_{x,y} \cap \mathsf{Recf}_{x,z} \neq \emptyset$.

Ejemplo 4.8 $\mathbb{R}^n \setminus \{0\}$ $(n \ge 2)$, es conexo por camino, ya que si el segmento

$$f_{x,y}(t) = (1-t)x + ty,$$

pasa por cero buscamos otro vector, que no se encuentre en el segmento, de modo de construir una función continua que no pase por el origen, por ello $\mathbb{R}^n\setminus\{0\}$ tiene solamente una componente conexa.

Ejemplo 4.9 En ejemplo 4.3 concluimos que

$$B = \{(x, \mathrm{sen}(\frac{1}{x})) | x \in \mathbb{R}^+\} \cup \{(0, y) | y \in [-1, 1]\}$$

es conexo, pero no es conexo por camino

Para ello, note que $(0,0), (\frac{1}{2\pi},0) \in B$, si suponemos que es conexo por camino, luego existe $f:[0,1] \to B$ continua tal que $f(0)=(0,0), f(1)=(\frac{1}{2\pi},0)$.

Definamos

$$J = \{t \in [0, 1[|f(t) \in \{0\} \times [-1, 1]\} = f^{-1}(\{0\} \times [-1, 1])$$

Notemos que $Z = \{0\} \times [-1, 1]$ es cerrado, luego $f^{-1}(\{0\} \times [-1, 1]) = J$ es cerrado, además es no vació, ya que el origen perteneces a J.

También J es abierto, sea $t \in J$, luego $f(t) \in \{0\} \times [-1, 1]$), consideremos V una bola de centro el origen y radio menor que 1, tal que contenga a f(t), y de modo la intersección de $V \cap B$ no es conexo, luego debe existir un intervalo U, que contiene a t tal que $f(U) \subseteq \{0\} \times [-1, 1]$. lo cual implica que $U \subset J$.

De este modo J es un abierto, cerrado y no vació en un conexo [0, 1], luego J = [0, 1].

Teorema 4.5 Sea $f: X \to Y$ una función continua y X un espacio conexo por camino, entonces f(X) es conexo por camino.

Teorema 4.6 Sean X, Y dos espacios conexos por camino, entonces X × Y también lo es.

4.2.1. Componente Conexa por Camino

Si X es un espacio topológico, entonces se define en X la siguiente relación

$$x \sim y \quad \Leftrightarrow \quad \text{existe un camino de } x \text{ a } y.$$
 (4.2)

La relación es de equivalencia, ya que, la funciones constante son continua luego es refleja, simétrica al considera la función $f:[0,1]\to [0,1]$ dada por f(t)=1-t, luego si $f_{x,y}$ es un camino que une x con y, entonces $f_{x,y}\circ f$ es un camino que une y con x. Finalmente es transitiva ya que se define

$$f_{x,y} * f_{y,z}(t) = \begin{cases} f_{x,y}(2t) & \text{si} \quad t \leqslant \frac{1}{2} \\ f_{y,z}(2t-1) & \text{si} \quad t \geqslant \frac{1}{2} \end{cases}$$

es un camino que une x con z.

Si denotamos por O_x^c la clase mediante la relación en (4.2), entonces

$$X = \bigcup_{x \in R} O_x^c.$$

Diremos que O_x^c es la componente conexa por caminos del punto x.

Definición 4.7 Sea X un espacio topológico.

Una componente conexa por camino en X es un subconjunto conexo por camino maximal de X.

Proposición 4.4 Las componente conexa por camino están contenida en alguna componente conexa del espacio topológico

Ejemplo 4.10

- 1. \mathbb{R} tiene una sola componente conexa por camino, \mathbb{R} .
- 2. $\mathbb{R}\setminus\{0\}$ tiene dos componentes conexas por camino, $\mathbb{R}^+, \mathbb{R}^-$.
- 3. $A = \{a, b, c\}$ y $\Im\{\phi, \{a\}, \{a, b\}, \{a, c\}, A\}$ Determinar las componentes conexa por camino.

Considere las funciones

$$f(t) = \begin{cases} a & si & t < \frac{1}{2} \\ c & si & t \geqslant \frac{1}{2} \end{cases}$$

4. $A=\{\alpha,b,c\} \ \textit{y} \ \Im\{\varphi,\{\alpha\},\{c\},\{\alpha,c\},A\} \ \textit{Determinar las componentes conexa por camino}.$

$$f_{x,y} * f_{y,z}(t) = \begin{cases} a & si & t < \frac{1}{2} \\ b & si & t = \frac{1}{2} \\ c & si & t > \frac{1}{2} \end{cases}$$

5. (N, T_{cf}) . Determinar las componentes conexas por camino.

4.3. Espacios Localmente Conexos

Definición 4.8 Sea X un espacio topológico y $x \in X$, entonces

- 1. Se dice que X es localmente conexo en x, si y sólo si, para todo $U \in \mathcal{V}(x)$, existe V abierto conexo, tal que, $x \in V \subseteq U$.
- 2. Se dice que X es localmente conexo, si y sólo si, para todo $x \in X$, X es localmente conexo en x.
- 3. Se dice que X es localmente conexo por caminos en x, si y sólo si, para todo $U \in \mathcal{V}(x)$, existe V abierto conexo por caminos, tal que, $x \in V \subseteq U$.
- 4. Se dice que X es localmente conexo por caminos, si y sólo si, para todo $x \in X$, X es localmente conexo por caminos en x.

Ejemplo 4.11 $X = \mathbb{R}^- \cup \mathbb{R}^+$ no es conexo, pero es localmente conexo.

Dado U abierto en X y $x \in U$, luego existe $\varepsilon > 0$, tal que $]x - \varepsilon, x + \varepsilon[* \subseteq U$, escogemos $\delta = \frac{|x|}{2}$, y definimos $V =]x - \delta, x + \delta[\cap]x - \varepsilon, x + \varepsilon[$ es conexo y se tiene que $x \in V \subseteq U$.

Teorema 4.7 Sea X un espacio topológico, entonces

- X es localmente conexo, si y sólo si, para todo conjunto abierto de X, las componentes conexas son abiertos.
- 2) X es localmente conexo por caminos, si y sólo si, para todo conjunto abierto de X, las componentes conexas por caminos son abiertos.

Demostración Sea X un conjunto localmente conexo, luego Sea U un abierto en X. Por lo tanto, para todo $x \in U$ existe V_x conexo tal que $x \in V_x \subseteq U$, sea C_x la componente conexa en U, que contiene a x, $V_x \subseteq C_x$. Del mismo modo podemos repetir para todo elemento que se encuentre en la componente, por maximalidad $\forall z \in C_x, z \in V_z \subseteq C_x \subseteq U$. De este modo la componente es abierta.

Inversamente, Si dado $x \in U$, abierto, luego $x \in C_x \subseteq U$, es abierto en la topología relativa, como U es abierto se tiene que es abierto en X

Teorema 4.8 Sea X un espacio topológico, entonces

- Cada componente conexa por caminos de X, está contenida en una componente conexa de X.
- 2) Si X es localmente conexo por caminos, entonces, las componentes conexas y conexas por caminos son las mismas.

Demostración

- 1) Sea $x \in X$ y O_x^c su respectiva componente conexa por caminos. Sea $y \in O_x^c$, entonces, existe $f_{x,y}$ un camino de x a y, luego, por Teorema 4.3, $f_{x,y}([0,1])$ es conexo en X. Claramente $x \in O_x^c = \bigcup_{y \in O_x^c} f_{x,y}([0,1])$, además, por Proposición 4.2, O_x^c es conexo en X, por lo tanto $O_x^c \subseteq O_x$.
- 2) Si X es localmente conexo por caminos, por Teorema 4.7, sabemos que O_x^c es un conjunto abierto, además $O_x = O_x^c \stackrel{\cdot}{\cup} O_x \backslash O_x^c$. Supongamos que $O_x \backslash O_x^c \neq \emptyset$, entonces, existe $z \in O_x \backslash O_x^c$, y existe O_c^z abierto, de modo que

$$O_x \backslash O_x^c = \bigcup_{z \in O_x \backslash O_x^c} O_c^z,$$

por lo tanto $O_x \setminus O_x^c$ es abierto, luego $\{O_x^c, O_x \setminus O_x^c\}$ es una separación de O_x lo cual es una contradicción, pues O_x es conexo, así $O_x \setminus O_x^c = \emptyset$. Por lo tanto $O_x = O_x^c$.

4.4. Espacios Compactos

Definición 4.9 Sea X un conjunto, $\{U_i\}_{i\in I}$ una familia de conjuntos.

- 1. Se dice que $\{U_i\}_{i\in I}$ es un cubrimiento de X, si y sólo si, $X=\bigcup_{i\in I}U_i$.
- 2. Se dice que $\{U_i\}_{i\in I}$ es un cubrimiento por abiertos de X, si y sólo si, $\{U_i\}_{i\in I}$ es un cubrimiento de X y para todo $i\in I$, U_i es abierto.

Definición 4.10 Se dice que X es compacto, si y sólo si, todo cubrimiento por abiertos de X tiene un subcubrimiento finito de X. Es decir, si $X = \bigcup_{i \in I} U_i$, entonces existe $J \subseteq I$ finito, de modo que $X = \bigcup_{i \in I} U_i$.

 $Además\ Y\subseteq X\ es\ compacto,\ si\ y\ sólo\ si,\ Y\ es\ compacto\ con\ la\ topología\ relativa.$

Lema 4.9 Un subconjunto $Y \subseteq X$ es compacto, si y sólo si, todo cubrimiento de Y por abiertos de X, tiene un subcubrimiento finito.

Demostración

- \Rightarrow) Sea $\{U_i\}_{i\in I}$ un cubrimiento de Y por abiertos de X, entonces $\{U_i\cap Y\}_{i\in I}$ es un cubrimiento por abiertos de Y, como Y es compacto, existen $i_1,\ldots,i_n\in I$ tal que $Y=\bigcup_{j=1}^n U_{i_j}$ por lo tanto $\{U_{i_j}\}_{j=1}^n$ es un cubrimiento finito de Y por abiertos de X.
- \Leftarrow) Sea $\{V_i\}_{i\in I}$ un cubrimiento de Y, entonces, existen $U_i\in \mathcal{T}_X$ tal que $V_i=U_i\cap Y$ para todo $i\in I$, luego $\{U_i\}_{i\in I}$ es un cubrimiento de Y por abiertos de X, por lo tanto, existen $i_1,\ldots,i_n\in I$ tal que $Y=\bigcup_{j=1}^n U_{i_j}$, luego

$$Y = \left(\bigcup_{j=1}^{n} U_{i_{j}}\right) \cap Y = \bigcup_{j=1}^{n} (U_{i_{j}} \cap Y),$$

por lo tanto Y es compacto.

En adelante nos referimos por cubrimiento a un cubrimiento por abiertos.

Teorema 4.10 Sea X un espacio topológico compacto e $Y \subseteq X$ cerrado, entonces Y también es compacto.

Demostración Sea $\{U_i\}_{i\in I}$ un cubrimiento de Y, entonces

$$X = Y \stackrel{\cdot}{\cup} Y^c = \left(\bigcup_{i \in I} U_i \right) \stackrel{\cdot}{\cup} Y^c.$$

Como Y^c es abierto, entonces es un cubrimiento por abiertos de X. Pero X es compacto, entonces existen $i_1,\ldots,i_n,\,n<\infty$ tal que

$$X = Y \stackrel{.}{\cup} Y^c = \left(\stackrel{n}{\underset{j=1}{\bigcup}} U_{i_j} \right) \stackrel{.}{\cup} Y^c,$$

luego $Y=\bigcup_{j=1}^n U_{\mathfrak{i}_j},$ por lo tanto Y es compacto.

Ejemplo 4.12 El espacio real $\mathbb R$ no es compacto, en efecto, definamos el siguiente cubrimiento

$$\{U_i\}_{i\in\mathbb{Z}}, \qquad U_i:=\left]i-1,i+1\right[, \qquad \mathbb{R}=\bigcup_{i\in\mathbb{Z}}U_i.$$

Si suponemos que \mathbb{R} es compacto, existe $I\subseteq \mathbb{Z}$ finito, de modo que $\mathbb{R}=\bigcup_{i\in I}U_i$, lo cual no puede ser, ya que máx $I+2\not\in\bigcup_{i\in I}U_i$.

Ejemplo 4.13 Todo conjunto finito es compacto

Teorema 4.11 Todo subconjunto compacto de un espacio de Hausdorff es cerrado.

Demostración Sea X un espacio de Hausdorff e $Y \subseteq X$ compacto.

Si Y = X, entonces $Y^c = \emptyset$ abierto, por lo tanto Y es cerrado.

Si $Y \neq X$, existe $x_o \in X \setminus Y$, además, X es Hausdorff, entonces, para todo $y \in Y$ existe $U_y \in \mathcal{V}(x_o)$ y $V_y \in \mathcal{V}(y)$ de modo que $U_y \cap V_y = \emptyset$. Luego $Y \subseteq \bigcup_{y \in Y} V_y$, pero Y es compacto, entonces $Y \subseteq \bigcup_{i=1}^n V_{y_i}$ $(n < \infty)$. Consideremos el conjunto abierto $U_{x_o} = \bigcap_{i=1}^n U_{y_i}$ y sea $y_o \in \{y_1, \dots, y_n\}$, entonces

$$U_{x_o} \cap V_{y_o} = \left(\bigcap_{i=1}^n U_{y_i}\right) \cap V_{y_o} = \bigcap_{i=1}^n (U_{y_i} \cap V_{y_o}) = \emptyset,$$

luego tenemos

$$U_{x_o} \cap \left(\bigcup_{i=1}^n V_{y_i} \right) = \bigcup_{i=1}^n (U_{x_o} \cap V_{y_i}) = \emptyset,$$

entonces $U_{x_o} \cap Y = \emptyset$, por lo tanto $U_{x_o} \subseteq Y^c$, con $U_{x_o} \in \mathcal{V}(x_o)$, es decir, $X \setminus Y = Y^c$ es abierto. Así, obtenemos que Y es cerrado.

Proposición 4.5 Sean (X, T) un espacio de Hausdorff, Y un subconjunto compacto de X y $x_o \in Y^c$. Entonces, existen $U, V \in T$ disjuntos, tal que $x_o \in U$ e $Y \subseteq V$.

Demostración Como X es un espacio de Hausdorff, para todo $y \in Y$ existe $V_y \in \mathcal{V}(y)$ y $V_{x_o,y} \in \mathcal{V}(x_o)$ tal que $V_y \cap V_{x_o,y} = \emptyset$, luego $\{V_y\}_{y \in Y}$ es un cubrimiento de Y, pero Y es compacto, entonces existen $y_1, \ldots, y_n \in Y$ tal que $Y = \bigcup_{i=1}^n V_{y_i}$. Luego, basta considerar

$$U = \bigcap_{i=1}^n V_{x_o,y_i}, \qquad V = \bigcup_{i=1}^n V_{y_i},$$

claramente $U, V \in \mathcal{T} y \ U \cap V = \emptyset$.

Teorema 4.12 Si X es compacto y $f: X \to Y$ es continua, entonces f(X) es compacto.

Demostración Sea $\{U_i\}_{i\in I}$ un cubrimiento por abiertos de f(X), como f es continua, entonces para todo $i\in I$, $f^{-1}(U_i)$ es abierto en X, además, para todo $x\in X$, $f(x)\in U_i$, entonces

$$X\subseteq\bigcup_{\mathfrak{i}\in I}f^{-1}(U_{\mathfrak{i}}),$$

pero X es compacto, entonces existe $\mathfrak{n}<\infty$ de modo que

$$X\subseteq\bigcup_{j=1}^nf^{-1}(U_{\mathfrak{i}_j}).$$

Por lo tanto

$$f(X)\subseteq\bigcup_{j=1}^n U_{i_j},$$

esto prueba que f(X) es compacto.

Proposición 4.6 Sean X compacto, Y un espacio de Hausdorff y $f: X \to Y$ una función continua y biyectiva. Entonces f es un homeomorfismo.

Demostración Basta probar que $f^{-1}: Y \to X$ es continua, para esto utilicemos el Teorema 2.3, demostrando que para todo A cerrado en X, entonces, $(f^{-1})^{-1}(A)$ es cerrado en Y. Sea A un cerrado en X, como X es compacto, por Teorema 4.10, entonces A es compacto, luego, por Teorema 4.12, f(A) es compacto en Y, pero Y es un espacio de Hausdorff, entonces por Teorema 4.11 tenemos que $(f^{-1})^{-1}(A) = f(A)$ es cerrado en Y. Por lo tanto f^{-1} es continua y así f es un homeomorfismo.

Teorema 4.13 Sean X, Y dos espacio compactos, entonces $X \times Y$ es compacto.

Claramente, para todo $a \in X$ y $b \in Y$, las siguientes funciones son homeomorfismos

$$f_b: X \to X \times \{b\}, \qquad f_b(x) := (x, b),$$

$$f_{\alpha}: Y \to {\{\alpha\}} \times Y, \qquad f_{\alpha}(y) := (\alpha, y).$$

Sea $\{U_i\}_{i\in I}$ un cubrimiento de $X\times Y$, entonces

$$X\times\{b\}\subseteq X\times Y\subseteq\bigcup_{\mathfrak{i}\in I}U_{\mathfrak{i}},$$

pero X es compacto, entonces, existen $i_1,\dots,i_n\in I$ de modo que

$$X\times\{b\}\subseteq\bigcup_{j=1}^nU_{i_j}=:U.$$

Como U es abierto, para todo $x \in X$, existen, $V_x \in \mathcal{V}(x)$ y $V_{x,b} \in \mathcal{V}(b)$ tal que

$$(x,b) \in V_x \times V_{x,b} \subseteq U, \qquad V_x \times V_{x,b} \in \mathcal{V}((x,b)),$$

es decir, $\bigcup_{x \in X} V_x$ es un cubrimiento de X, luego, existen $x_1, \ldots, x_m \in X$ de manera que $X = \bigcup_{i=1}^m V_{x_i}$, ya que es compacto. Además, $b \in \bigcap_{i=1}^m V_{x_i,b} =: W_b \in \mathfrak{T}_Y$, por lo tanto

$$X \times \{b\} \subseteq \left(\bigcup_{i=1}^{m} V_{x_i}\right) \times W_b \subseteq U.$$

Luego, para todo $b \in Y$ existe $W_b \in \mathcal{V}(b)$, es decir, $\bigcup_{b \in Y} W_b$ es un cubrimiento de Y, por la compacticidad de Y existen $b_1, \ldots, b_r \in Y$ tal que $Y = \bigcup_{k=1}^r W_{b_k}$.

Así, obtenemos lo siguiente:

$$\begin{split} X \times Y &= X \times \bigcup_{k=1}^{r} W_{b_k}, \\ &= \bigcup_{k=1}^{r} \left(X \times W_{b_k} \right), \\ &= \bigcup_{k=1}^{r} \left(\bigcup_{j=1}^{n} U_{i_j} \right), \\ &= \bigcup_{(k,j)=1}^{(r,n)} U_{(k,j)}. \end{split}$$

Por lo tanto $X \times Y$ es compacto.

Definición 4.11 Sea X un conjunto. Se dice que una familia de subconjuntos de X satisface la condición de intersección finita, si y sólo si, toda intersección finita de elementos de la familia es no vacía.

Teorema 4.14 Sea X un espacio topológico.

X es compacto, si y sólo si, toda familia de cerrados en X que satisface la condición de intersección finita tiene intersección no vacía.

Demostración

 \Rightarrow) Sea $\mathcal{C}=\{F_i\}_{i\in I}$ una familia de cerrados en X de modo que \mathcal{C} satisface la condición de intersección finita, probaremos que $\bigcap_{i\in I}F_i\neq\emptyset$. Sea $\mathcal{D}=\{F_i^c\}_{i\in I}$, sabemos que para todos

 $i_1,\dots,i_n\in I$ con $n<\infty,$ se tiene $\bigcap_{j=1}^n F_{i_j}\neq\emptyset,$ entonces

$$\bigcup_{i=1}^{n} F_{i_{i}}^{c} \neq X,$$

es decir, toda unión finita de elementos de $\mathcal D$ no cubre a X, luego, como X es compacto, $\mathcal D$ no es un cubrimiento de X, entonces

$$\bigcup_{i \in I} F_i^c \neq X \quad \Leftrightarrow \quad \bigcap_{i \in I} F_i \neq \emptyset.$$

 \Leftarrow) Sea $\{U_i\}_{i\in I}$ un cubrimiento de X, supongamos que no existe un subcubrimiento finito de X, es decir, para todos i_1,\ldots,i_n con $n<\infty$ se tiene que $\bigcup_{j=1}^n U_{i_j}\neq X$, de otro modo, $\bigcap_{j=1}^n U_{i_j}^c\neq\emptyset$. Entonces $\mathcal{D}=\{U_i^c\}_{i\in I}$ es una familia de cerrados que cumple la condición de intersección finita, por lo tanto $\bigcap_{i\in I} U_i^c\neq\emptyset$, entonces

$$\bigcup_{i\in I} U_i \neq X,$$

lo cual es una contradicción, pues $\{U_i\}_{i\in I}$ es un cubrimiento de X.

Esto demuestra el teorema.

Teorema 4.15 Todo intervalo cerrado en \mathbb{R} es compacto.

Demostración Sean $I_x^y = [x,y]$ con x < y, un intervalo cerrado en \mathbb{R} y $\mathfrak{C} = \{U_i\}_{i \in I}$ un cubrimiento de I_x^y . Definamos el siguiente conjunto:

$$C := \left\{ \ t \in I_x^y | I_x^t \ \mathrm{tiene} \ \mathrm{un} \ \mathrm{subcubrimiento} \ \mathrm{finito} \ \mathrm{de} \ \mathfrak{C} \ \right\}.$$

Tenemos que existe $i_o \in I$ tal que $x \in U_{i_o}$, luego $C \neq \emptyset$ ya que

$$x \in C \subseteq I_x^y$$
, $[x, x] = \{x\} \subseteq U_{i_0} \in \mathcal{C}$.

Probemos ahora que sup C=y, supongamos que sup C=:s< y, como $s\in I_x^y\subseteq \bigcup_{i\in I}U_i$, existe $j_o\in I$ tal que $s\in U_{j_o}$, además, como U_{j_o} es abierto, existe $\varepsilon>0$ de modo que $]s-\varepsilon,s+\varepsilon[\subseteq U_{j_o}.$ Como s es el supremo y $\varepsilon>0$, existe $t\in M$ tal que $s-\varepsilon< t< s$, es decir, existe $\delta>0$ tal que

$$\delta < \varepsilon$$
, $t = s - \delta \in M$.

Luego, existen $i_1,\ldots,i_n\in I$ tal que $[x,s-\delta]\subseteq\bigcup_{k=1}^nU_{i_k}$ por lo tanto

$$[x,s+\delta]\subseteq [x,s-\delta]\cup [s-\varepsilon,s+\varepsilon]\subseteq \left(\bigcup_{k=1}^n U_{i_k}\right)\cup U_{j_o}=\bigcup_{k=1}^{n+1} U_{i_k},$$

donde $\mathfrak{i}_{n+1} := \mathfrak{j}_o$. Lo cual es una contradicción, ya que \mathfrak{s} es el supremo.

Por lo tanto s = y, es decir I_x^y es compacto.

Teorema 4.16 Sea $F \subseteq \mathbb{R}$. Entonces, F es compacto, si y sólo si, F es cerrado y acotado.

Demostración

 \Rightarrow) Sabemos que $\mathbb R$ es un espacio métrico, luego Hausdorff. Además, por Teorema 4.11, si F es compacto, entonces es cerrado, basta probar luego que F es acotado. Sabemos que $F \subseteq \bigcup_{r \in \mathbb R}] - r, r[$, pero F es compacto, por lo tanto, existen $r_1, \ldots, r_n \in \mathbb R$ con $n < \infty$, de manera que $F = \bigcup_{i=1}^n] - r_i, r_i[$, llamemos $R = \{r_i\}_{i=1}^n$ y sea $r = \max R$, luego se tiene lo siguiente:

$$F = \bigcup_{i=1}^{n}] - r_i, r_i [\subseteq] - r, r[,$$

por lo tanto F es acotado.

 \Leftarrow) Sea F un conjunto cerrado y acotado, entonces, existe $\mathfrak{m} \in \mathbb{R}^+$ tal que para todo par de puntos $x,y \in F$, $d(x,y) < \mathfrak{m}$, luego para $x_o \in F$ obtenemos:

$$F \subset [x_0 - m, x_0 + m] =: K$$

como F es un cerrado dentro de un compacto K, por Teorema 4.10, F es compacto. □

Teorema 4.17 Sean X un espacio topológico compacto y $f: X \to \mathbb{R}$ una función continua. Entonces, existen $a, b \in X$ tal que para todo $x \in X$, $f(a) \leqslant f(x) \leqslant f(b)$.

Demostración Sea $x \in X$, como X es compacto, entonces, por Teorema 4.12, f(X) es compacto, luego, por Teorema 4.16, f(X) es cerrado y acotado. Supongamos que $s = \sup f(X) \notin f(X)$, entonces $s \in f(X)^c$ un abierto, luego, existe $\epsilon > 0$ tal que $s \in]s - \epsilon, s + \epsilon [\subseteq f(X)^c, lo cual es una contradicción ya que <math>s - \epsilon$ es cota superior de f(X) y s es el supremo. Por lo tanto $s \in f(X)$, luego, existe $b \in X$ de modo que f(b) = s, entonces para todo $x \in X$, se tiene

 $f(x) \leq f(b)$. Análogamente probamos que existe $a \in X$ tal que $f(a) = r = \inf f(X) \in f(X)$ y así

$$f(a) \leqslant f(x) \leqslant f(b)$$
,

para todo $x \in X$.

4.5. Espacios Localmente Compactos

Definición 4.12 Sea X un espacio topológico y $x \in X$

1. Se dice que X es localmente compacto en x, si y sólo si, existen K compacto en X y $U \in \mathcal{V}(x)$ y tal que

$$x \in U \subset K \subset X$$
.

2. Se dice que X es localmente compacto, si y sólo si, X es localmente compacto en x, para todo $x \in X$.

Ejemplo 4.14 El espacio real \mathbb{R} no es compacto, pero es localmente compacto, en efecto, para todo $x \in \mathbb{R}$ se tiene lo siguiente:

$$x\in]x-1,x+1[\subseteq [x-1,x+1], \qquad]x-1,x+1[\in \mathcal{V}(x), \quad I^{x+1}_{x-1}\ compacto.$$

En general, \mathbb{R}^n no es compacto, ya que el cubrimiento por abiertos $B(0, \mathfrak{m})$ con $\mathfrak{m} \in \mathbb{N}$, no tiene subcubrimiento finito, pero es locamente compacto.

$$x \in \prod]x_{\mathfrak{i}}-1, x_{\mathfrak{i}}+1 [\subseteq \prod [x_{\mathfrak{i}}-1, x_{\mathfrak{i}}+1]$$

Teorema 4.18 (Compactificación por un Punto) Sea X un espacio topológico.

X es de Hausdorff y localmente compacto, si y sólo si, existe un espacio topológico Y que satisface con las siguientes condiciones:

- $i) X \subseteq Y$.
- ii) $Y \setminus X$ contiene un solo punto.
- iii) Y es compacto y Hausdorff.

Además, si $Y \in Y'$ son dos espacios similares entonces existe un homeomorfismo $h: Y \to Y'$ que restringido a X es la identidad.

Demostración

 \Rightarrow) Sea $Y = X \cup \{p\}$ para algún $p \notin X$. Definamos una topología sobre Y que cumpla con las condiciones anteriores.

$$\mathfrak{I}_Y = \left\{ \ U \subseteq Y | U \in \mathfrak{I}_X, \ \mathrm{o \ existe} \ C \subseteq X \ \mathrm{compacto}, \ \mathrm{tal \ que} \ U = Y \backslash C \ \right\}.$$

Claramente
$$X \subseteq Y$$
 y $\#(Y \setminus X) = \#\{p\} = 1$.

Veamos que (Y, \mathcal{T}_Y) es un espacio topológico:

- i) Como $\emptyset \in \mathcal{T}_X$ entonces $\emptyset \in \mathcal{T}_Y$, además, como \emptyset es compacto en X, se tiene $Y \setminus \emptyset = Y \in \mathcal{T}_Y$.
- ii) Sean $U, V \in \mathcal{T}_Y$, distingamos tres casos:
 - a) Si $U, V \in \mathcal{T}_X$. Entonces $U \cap V \in \mathcal{T}_X \subseteq \mathcal{T}_Y$.
 - b) Si $U \in \mathcal{T}_X$ y $V = Y \setminus C$ con C un compacto en X, entonces:

$$U \setminus C = U \cap C^c = U \cap Y \cap C^c = U \cap (Y \cap C^c) = U \cap V \in \mathfrak{T}_y.$$

c) Si $U = Y \setminus C_1$ y $V = Y \setminus C_2$ con C_1 , C_2 compactos en X. Claramente $C_1 \cup C_2$ es un compacto en X, luego:

$$Y \setminus (C_1 \cup C_2) = Y \cap C_1^c \cap C_2^c = (Y \cap C_1^c) \cap (Y \cap C_2^c) = U \cap V \in \mathfrak{T}_Y.$$

- iii) Sea $\{U_i\}_{i\in I}$ una familia de abiertos en Y. Distingamos tres casos:
 - a) Si $U_i \in T_X$ para todo $i \in I$, entonces $\bigcup_{i \in I} U_i \in T_X \subseteq T_Y$.
 - b) Si $U_i = Y \setminus C_i$ con C_i compacto en X para todo $i \in I$. Sabemos que $\bigcap_{i \in I} C_i$ es compacto en X, entonces:

$$Y \setminus \left(\bigcap_{i \in I} C_i\right) = Y \bigcap \left(\bigcup_{i \in I} C_i^c\right) = \bigcup_{i \in I} (Y \cap C_i^c) = \bigcup_{i \in I} U_i \in \mathfrak{T}_Y.$$

c) Si $I = J \stackrel{\cdot}{\cup} K$ donde $U_j \in \mathcal{T}_X$ para todo $j \in J$ y $U_k = Y \setminus C_k$ con C_k compacto en X para todo $k \in K$, entonces:

$$\begin{array}{rcl} \bigcup_{i \in I} U_i &=& \left(\bigcup_{j \in J} U_j \right) \cup \left(\bigcup_{k \in K} (Y \backslash C_k) \right), \\ \\ &=& \left(\bigcup_{j \in J} U_j \right) \cup \left(Y \backslash \left(\bigcap_{k \in K} C_k \right) \right), \\ \\ &=& \left(\bigcup_{j \in J} U_j \right) \cup \left(Y \cap \left(\bigcap_{k \in K} C_k \right)^c \right), \\ \\ &=& Y \cap \left(\left(\bigcup_{j \in J} U_j \right) \cup \left(\bigcap_{k \in K} C_k \right)^c \right), \\ \\ &=& Y \backslash \left(\left(\bigcup_{j \in J} U_j \right)^c \cap \left(\bigcap_{k \in K} C_k \right) \right) \in \mathfrak{T}_Y. \end{array}$$

Por lo tanto \mathcal{T}_Y es una topología sobre Y.

Por último resta probar que Y es compacto y Hausdorff:

Sea $\{U_i\}_{i\in I}$ un cubrimiento de Y, como $\mathfrak{p}\in Y\neq X$, entonces existe $\mathfrak{i}_o\in I$ y $C_{\mathfrak{i}_o}$ compacto en X, tal que $\mathfrak{p}\in U_{\mathfrak{i}_o}=Y\setminus C_{\mathfrak{i}_o}$, además $Y=C_{\mathfrak{i}_o}\stackrel{.}{\cup} (Y\setminus C_{\mathfrak{i}_o})$. Recordemos que cada U_i puede ser de dos formas:

$$U_i = U_i \in T_X, \qquad U_i = (Y \cap C_i^c),$$

Luego intersección con X

$$U_{\mathfrak{i}}\cap X\in \mathfrak{T}_X, \qquad U_{\mathfrak{i}}\cap X=(Y\cap C^{\mathfrak{c}}_{\mathfrak{i}})\cap X=X\cap C^{\mathfrak{c}}_{\mathfrak{i}}\in \mathfrak{T}_X,$$

es decir, abiertos en X. Luego

$$C_{\mathfrak{i}_o}\subseteq \left(\bigcup_{\mathfrak{i}\in I\setminus\{\mathfrak{i}_o\}}U_\mathfrak{i}\right)\cap X\ \subseteq \bigcup_{\mathfrak{i}\in I\setminus\{\mathfrak{i}_o\}}(U_\mathfrak{i}\cap X)\,,$$

como $C_{\mathfrak{i}_o}$ es compacto, existen $\mathfrak{i}_1,\ldots,\mathfrak{i}_n\in I$ tal que

$$C_{i_o} \subseteq \bigcup_{j=1}^n (U_{i_j} \cap X) \subseteq \bigcup_{j=1}^n U_{i_j}.$$

Por lo tanto

$$Y = C_{\mathfrak{i}_o} \stackrel{.}{\cup} (Y \backslash C_{\mathfrak{i}_\mathfrak{p}}) \subseteq \bigcup_{j=1}^n U_{\mathfrak{i}_j} \cup U_{\mathfrak{i}_o} = \bigcup_{j=0}^n U_{\mathfrak{i}_j},$$

esto demuestra que Y es compacto.

Sean $x, y \in Y$, si $x, y \in X$, como X es Hausdorff entonces existen $V_x, V_y \in \mathcal{T}_X \subseteq \mathcal{T}_Y$ tal que $x \in V_x$, $y \in V_y$ y $V_x \cap V_y = \emptyset$, ahora si $x \in X$ e y = p entonces, como X es localmente compacto, existen $U \in \mathcal{T}_X \subseteq \mathcal{T}_Y$ y K compacto en X de modo que

$$x \in U \subseteq K \subseteq X, \qquad y = p \in Y \setminus K \in \mathfrak{T}_Y, \qquad U \cap (Y \setminus K) = \emptyset,$$

por lo tanto Y es un espacio de Hausdorff.

Claramente, si Y_1, Y_2 son espacios similares tal que

$$Y_1 = X \cup \{p_1\}, \qquad Y_2 = X \cup \{p_2\}, \qquad p_1, p_2 \not\in X,$$

entonces existe un homeomorfismo $h: Y_1 \to Y_2$ definido como sigue

$$h(x) = \left\{ \begin{array}{ll} x & \mathrm{si} & x \in X \\ \\ p_2 & \mathrm{si} & x = p_1 \end{array} \right., \qquad x \in Y_1.$$

 \Leftarrow) Sea $Y = X \cup \{p\}$ con $p \notin X$ un espacio topológico con las propiedades i), ii) y iii), probemos que X es un espacio de Hausdorff localmente compacto:

Sean $x_1, x_2 \in X \subseteq Y$ luego, existen $V_1, V_2 \in \mathcal{T}_Y$ tal que $x_1 \in V_1$, $x_2 \in V_2$ y $V_1 \cap V_2 = \emptyset$, basta considerar $x_i \in U_i = X \cap V_i \in \mathcal{T}_X$ para i = 1, 2 y claramente $U_1 \cap U_2 = \emptyset$, por lo tanto X es de Hausdorff.

Sea $x\in X\subseteq Y$, como Y es de Hausdorff, existen $U,V\in \mathfrak{T}_Y$ tal que $x\in U,\, p\in V$ y $U\cap V=\emptyset$, entonces

$$x \in U \subset V^c$$
,

como V^c es cerrado en Y entonces es compacto, ya que Y es compacto, luego X es localmente compacto. \Box

Ejemplo 4.15 Sea $\mathfrak{p} = \infty$, entonces:

1.
$$Y = \mathbb{R} \cup \{\infty\} = S^1$$
.

2.
$$Y = \mathbb{R}^n \cup \{\infty\} = S^n$$
.

Teorema 4.19 Sea X un espacio de Hausdorff.

X es localmente compacto, si y sólo si, para todo $x \in X$ y todo $U_x \in \mathcal{V}(x)$, existe $V_x \in \mathcal{V}(x)$ de modo que \overline{V}_x es compacto y además:

$$x\in \overline{V}_x\subseteq U_x.$$

Demostración

 $\Leftarrow) \ {\rm Claramente}, \ {\rm ya} \ {\rm que} \ x \in V_x \subseteq \overline{V}_x.$

 \Rightarrow) Sea $x \in X$ y $U_x \in \mathcal{V}(x)$. Consideremos $Y = X \cup \{\infty\}$ con la topología de compactificación por un punto, entonces Y es compacto y Hausdorff, además $U_x \in \mathcal{T}_Y$, luego $U_x^c = Y \setminus U_x$ es cerrado y por lo tanto compacto. Por Proposición 4.5, existen $V, W \in \mathcal{T}_Y$ de modo que:

$$U_x^c \subseteq V, \qquad x \in W, \qquad V \cap W = \emptyset,$$

entonces, $x \in W \subseteq V^c \subseteq U_x$. Como V^c es cerrado e Y es compacto, entonces V^c es compacto, luego, basta considerar $V_x = V^c$, así obtenemos $x \in \overline{V}_x \subseteq U_x$.

Corolario 4.4 Sean X un espacio topológico de Hausdorff y localmente compacto, y $A \subseteq X$. Si A es abierto o cerrado, entonces A es localmente compacto.

Demostración

Caso 1: Si A es cerrado, consideremos $x \in A \subseteq X$. Como X es localmente compacto, existen $U \in \mathcal{V}(x) \subseteq \mathcal{T}_X$ y K un compacto en X de modo que

$$x \in U \subseteq K \subseteq X$$
,

entonces $x \in U \cap A \subseteq K \cap A$, pero $K' = K \cap A$ es cerrado en A y está contenido en el compacto K, entonces K' es compacto, además, $U' = U \cap A$ es abierto en A, luego $x \in U' \subseteq K'$, por lo tanto A es localmente compacto.

Caso 2: Si A es abierto, consideremos $x \in A$, como $A \in \mathcal{T}_X$ y X localmente compacto, entonces, por Teorema 4.19, existe $V_x \in \mathcal{V}(x)$ compacto tal que

$$x\in \overline{V}_x\subseteq A,$$

por lo tanto A es localmente compacto.

Corolario 4.5 Sea X un espacio topológico. Entonces, X es homeomorfo a un subespacio abierto de un espacio compacto y de Hausdorff, si y sólo si, X es localmente compacto y Hausdorff.

Demostración

 \Leftarrow) Supongamos que X es localmente compacto y de Hausdorff. Consideremos $Y = X \cup \{\infty\}$ y el homeomorfismo inclusión $\iota: X \to Y$, luego X es homeomorfo a $\iota(X) = X \in \mathcal{T}_X \subseteq \mathcal{T}_Y$, donde Y es compacto y de Hausdorff (Teorema 4.18).

 \Rightarrow) Supongamos que X es homeomorfo mediante f a A un subespacio abierto de Y el cual es compacto y de Hausdorff. Como Y es de Hausdorff entonces A lo es, así X lo es.

Además, dado $x \in A \subseteq Y$, como A es abierto e Y compacto, existen $U \in \mathcal{V}(x)$ y K un compacto, tal que

$$x \in U \subseteq A \subseteq Y = K$$
,

por lo tanto X es localmente compacto.

Recordemos: Sea (X, \mathcal{T}) un espacio topológico, de modo que todo singleton en X es cerrado. Se dice que:

- 1. X es un espacio regular, si y sólo si, para todo A cerrado de X y todo $x \in A^c$, existen $U, V \in \mathcal{T}$ de manera que $x \in U$ y $A \subseteq V$.
- 2. X es un espacio normal, si y sólo si, para todos A, B cerrados y disjuntos en X, existen $U, V \in \mathcal{T}$ tales que $A \subseteq U$ y $B \subseteq V$.

Teorema 4.20 Si X es compacto y Hausdorff, entonces X es normal.

Demostración Sean A, B cerrados y disjuntos en X, por Teorema 4.10, A, B son compactos. Sea $x \in A$, luego existen $U_x \in \mathcal{V}(x)$ y $W_x \in T_X$) tal que $U_x \cap W_x = \emptyset$, proposición 4.5, es decir,

$$B \subset W_x \in \mathcal{T}$$
, $U_x \cap W_x = \emptyset$, $x \in A$,

entonces $A\subseteq\bigcup_{x\in A}U_x$, como A es compacto, existen $x_1,\ldots,x_n\in X$ tal que $A\subseteq\bigcup_{i=1}^nU_{x_i}$, luego, basta considerar $U=\bigcup_{i=1}^nU_{x_i}$, además definamos $W=\bigcap_{i=1}^nW_{x_i}$.

Claramente se tiene que $B \subseteq W$ y $A \subseteq U$, además

$$U \cap W = (\cup_{i=1}^n U_{x_i}) \cap (\cap_{j=1}^n W_{x_j}) = \cup_{i=1}^n (U_{x_i} \cap (\cap_{j=1}^n W_{x_j})) = \varphi$$

Por lo tanto X es normal.

Teorema 4.21 (Lema de Urysohn) Sea (X, \mathcal{T}) un espacio topológico normal y A, B cerrados disjuntos. Entonces, existe $f: X \to [0, 1]$ continua, tal que

$$f(A) = \{0\}, \qquad f(B) = \{1\}.$$

Demostración Sea $P = \mathbb{Q} \cap [0, 1]$ un conjunto numerable y ordenado. Definamos una sucesión $\{P_j\}_{j=1}^{\infty}$ de la siguiente manera:

Como $A \cap B = \emptyset$, entonces

$$A \subseteq B^c =: U_1 \in \mathfrak{T}, \qquad P_1 := \{1\}.$$

Como X es normal, A es cerrado y U_1 abierto, entonces, existe $U_0 \in \mathcal{T}$ tal que

$$A\subseteq U_0\subseteq \overline{U}_0\subseteq U_1, \qquad P_2:=\{0,1\}$$

Donde s_3 es el siguiente a 0 en P

$$A\subseteq U_0\subseteq \overline{U}_0\subseteq U_{s_3}\subseteq \overline{U}_{s_3}\subseteq U_1, \qquad P_3=\{0,s_3,1\}.$$

De esta manera construimos U_{s_n} , donde s_n es el siguiente a s_{n-1} en P. Así, el término n-ésimo viene dado por $P_n = \{0, s_3, s_4, \dots, s_n, 1\}$ (los primeros n números de la sucesión), donde

$$A\subseteq U_0\subseteq \overline{U}_0\subseteq \cdots \subseteq U_{s_i}\subseteq \overline{U}_{s_i}\subseteq \cdots \subseteq U_1=B^c.$$

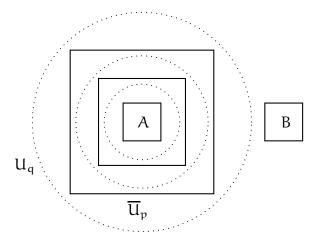
Es una sucesión definida por recurrencia $U_{s_j},$ están definido para todo $s_j \in P$

El conjunto $\{U_t|t\in P_n\}$ es ordenado por inclusión, tal como los respectivos subíndices en la recta real, notemos además que $P_n\cup\{s_{n+1}\}=P_{n+1}\subseteq[0,1]$.

Luego, como $s_{n+1} \neq 0 = \min P_{n+1}$ y $s_{n+1} \neq 1 = \max P_{n+1}$, existen $\mathfrak{p}, \mathfrak{q} \in P_{n+1}$ de modo que $\mathfrak{p} < s_{n+1} < \mathfrak{q}$. Usando la definición $U_{s_{n+1}}$ tenemos que

$$\overline{\mathsf{U}}_{\mathfrak{p}} \subset \mathsf{U}_{\mathsf{S}_{\mathsf{n}+1}} \subseteq \overline{\mathsf{U}}_{\mathsf{S}_{\mathsf{n}+1}} \subset \mathsf{U}_{\mathsf{q}}. \tag{4.3}$$

Así afirmamos que (4.3) se cumple para todo $p, q \in P_{n+1} \subseteq P$.



Podemos también extender la definición de U_i a todo $i \in \mathbb{Q}$ como sigue:

$$V_i = \left\{ \begin{array}{ll} \emptyset & \mathrm{si} & i < 0 \\ \\ U_i & \mathrm{si} & 0 \leqslant i \leqslant 1 \\ \\ X & \mathrm{si} & 1 < i \end{array} \right.$$

de modo que (4.3) sigue siendo cierto.

Para cada $x \in X$ definamos $Q(x) = \{i \in \mathbb{Q} | x \in V_i\}$, nótese que este conjunto no contiene valores menores que cero, ya que $V_i = \emptyset$ para i < 0. Además, si i > 1, $x \in V_i = X$ para todo $x \in X$, entonces $\mathbb{Q} \cap]1, \infty[\subseteq Q(x)$, por lo tanto Q(x) es acotado inferiormente y la mayor de sus cotas inferiores está en [0,1], esto nos permite definir la siguiente función:

$$f: X \to [0, 1], \qquad f(x) = \inf(Q(x)).$$

Notemos que, si $x \in A$ entonces f(x) = 0 ya que $A \subseteq V_0 \subseteq V_i$, $i \geqslant 0$, por otro lado, si $x \in B$ se tiene $x \notin V_1 = B^c$ y así $x \in V_i$ para i > 1, luego f(x) = 1.

Veamos ahora que f es continua:

Para esto primero probemos que

$$x \in \overline{V}_r \quad \Rightarrow \quad f(x) \leqslant r, \qquad \qquad x \not \in V_r \quad \Rightarrow \quad f(x) \geqslant r.$$
 (4.4)

Ya que:

Si $x \in \overline{V}_r$, entonces $x \in V_s$ para todo s > r, por lo tanto $]r, \infty[\cap \mathbb{Q} \subseteq Q(x)$, luego

$$f(x)=\inf(Q(x))\leqslant r.$$

Si $x \not\in V_r$, entonces $x \not\in V_s$ para todo s < r, por lo tanto $(]-\infty, r[\cap \mathbb{Q}) \cap Q(x) = \emptyset$, luego

$$f(x)=\inf(Q(x))\geqslant r.$$

Sean] $\mathfrak{a},\mathfrak{b}[\subseteq [0,1]$ abierto, $x\in f^{-1}(]\mathfrak{a},\mathfrak{b}[)$, entonces $\mathfrak{a}< f(x)<\mathfrak{b}$, luego, existen $\mathfrak{p},\mathfrak{q}\in\mathbb{Q}$ de modo que

$$a$$

 $\mathrm{como}\;\mathfrak{p}<\mathfrak{q}\;\mathrm{entonces}\;\overline{V}_{\mathfrak{p}}\subseteq V_{\mathfrak{q}}.$

Definimos $V=V_q-\overline{V}_p$ es un abierto, y el contrapositivo de (4.4) obtenemos lo siguiente

$$\mathsf{f}(x) > \mathfrak{p} \quad \Rightarrow \quad x \not \in \overline{V}_{\mathfrak{p}}, \qquad \qquad \mathsf{f}(x) < q \quad \Rightarrow \quad x \in V_q.$$

por lo tanto $x \in V$.

Además, si $y \in f(V)$ entonces existe $z \in V \subseteq X$ tal que f(z) = y, luego $z \in V_q \subseteq \overline{V}_q$ implica que $f(z) \leqslant q$, y $z \notin \overline{V}_p$ implica que $f(z) \geqslant p$, por lo tanto

$$f(z) \in [p, q] \subseteq]a, b[, f(V) \subseteq]a, b[.$$

Esto prueba que $f^{-1}(]a,b[)\in \mathcal{T},$ concluyendo la demostración.

4.6. Ejercicios Propuestos

1. Demostrar que los siguientes conjuntos son conexos:

$$[0,1] \times [0,1], B((0,0),1) \cup \{(1,0)\}, \{(x,y) \in \mathbb{R}^2 | xy < 1\}.$$

2. En \mathbb{R}^2 con la topología usual, se define los siguientes conjuntos

$$A = [-1, 1] \times [-1, 1] - \{(x, x) | x \in [-1, 1] - \{0\}\}$$

Determinar si A es conexo, es compacto

- 3. Sea (X,T) un espacio topológico y $B\subseteq X$ un subconjunto conexo, abierto y cerrado. Probar que B es una componente conexa.
- 4. Sean (X,T) un espacio topológico conexo y $A\subseteq X$ conexo. Si B es abierto y cerrado de X-A, probar que $A\cup B$ es conexo.
- 5. Demuestre que (X,T) es un espacio conexo si y sólo si para todo $M\subset X$ no vació y distinto de X entonces $Fr(M)\neq \varphi$
- 6. Demostrar que $\mathbb{R}^{n} \{0\}$ es conexo
- 7. Demostrar que $S^2 \{e_1, -e_1\}$ es conexo
- 8. Demostrar que S^2 no es homeomorfo a $\mathsf{S}^1.$
- 9. ¿Cuántas componentes conexas tiene $\mathbb{R}^3 \mathbb{S}^2$?.
- 10. Sea (X, \mathcal{T}) una espacio conexo y $\mathcal{T}_1 \subset \mathcal{T}$ entonces. Demostrar que (X, \mathcal{T}_1) es conexo.

- 11. Sea (X, \mathcal{T}) un espacio topológico, $A \subseteq X$ conexo. ¿Es Å conexo?.
- 12. Sea $f:[0,1] \to [0,1]$ continua, entonces existe un punto de $x \in [0,1]$, tal que f(x) = x.
- 13. Sea $X \subset \mathbb{R}^2$ formado por la unión de las rectas $y = \frac{1}{n}$, $n \in \mathbb{N}$ y los ejes coordenados. Muestre que X es conexo, pero no localmente conexo.
- 14. Sean C, X dos subconjuntos de un espacio métrico M. Si C es conexo y tiene un punto en común con X entonces C tiene un punto en común con la frontera de X.
- $15. \ \mathrm{Sea} \ U(\mathfrak{a},\mathfrak{b}) = \{\mathfrak{a}\mathfrak{n} + \mathfrak{b} \in \mathbb{Z} \ : \ \mathfrak{n} \in \mathbb{Z}\} \cap \mathbb{Z}^+ \ \mathrm{con} \ \mathfrak{a},\mathfrak{b} \in \mathbb{Z}^+.$

$$B = \{U(a, b) : (a, b) = 1, a, b \in \mathbb{Z}^+\}$$

- a) Demuestre que B es una base, sea T esta topología.
- b) Para todo $\mathfrak p$ primo, el conjunto $\{k\mathfrak p : k\in\mathbb Z^+\}$ es cerrado en $\mathfrak T$
- c) Si P es el conjunto de primo, $\stackrel{\circ}{P} = \phi$.
- d) ($\mathbb{Z}^+, \mathfrak{I}$) es conexo.
- 16. Sea (X, \mathcal{T}) un espacio topológico. Probar que: (X, \mathcal{T}) es conexo \Leftrightarrow para cualquier subconjunto A no vacío tal que $A \neq X$ se tiene que $Fr(A) \neq \emptyset$.
- 17. Sea X un espacio conexo por camino y sea $f: X \to Y$ continua entonces f(X) es conexo por camino.
- 18. Demostrar que si X es conexo por camino entonces X es conexo.
- 19. Sea X un conjunto infinito con la topología de complemento finito. Demostrar que X es conexo.
- 20. Usando la definición, estudiar si los siguientes conjuntos son compactos en los espacios que se indican
 - a) $\{(-1)^n + \frac{1}{n} : n \in \mathbb{N} \setminus \{0\}\} \subset \mathbb{R}$ con la topología usual.
 - b) $\mathbb{Q} \subset \mathbb{R}$ con la topología usual.

- c) $[0,1] \times \{3\} \subset \mathbb{R}^2$ con el orden lexicográfico.
- 21. Determinar si

$$X = \{(x,y) \in [0,1] \times [0,1] : (\exists n \in \mathbb{N}) (x = \frac{1}{n} \lor y = \frac{1}{n})\}$$
$$\cup \{(x,y) \in [0,1] \times [0,1] : (x = 0 \lor y = 0)\}$$

es compacto.

- 22. Demostrar que la unión finita de compacto es compacto.
- 23. Sean:

$$\begin{array}{lll} X_1 & = & \mathbb{S}^1 \cup (\mathbb{R} \times \{0\}) \cup (\{0\} \times \mathbb{R}) \\ \\ X_2 & = & (\mathbb{R} \times \{0,1\}) \cup (\{0,1\} \times \mathbb{R}) \\ \\ X_3 & = & (\mathbb{R} \times \{0\}) \cup \{(x,y) \in \mathbb{R}^2 \mid x=y\} \cup \{(x,y) \in \mathbb{R}^2 \mid y=-x+2\} \end{array}$$

Demostrar que ninguno es homeomorfo a cualquier otro.

- 24. Pruebe que los espacios siguientes son dos a dos homeomorfos
 - a) $X = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$
 - b) $Y = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2, z > 0\}$
 - $c) \ \, {\sf Z} = \mathbb{R}^2 \{(0,0)\}$
 - d) $W = \{(x, y, z) \in \mathbb{R}^3 : 1 < x^2 + y^2 < 2\}$
 - $e) \ \ \mathsf{T} = \{(\mathsf{x},\mathsf{y},z) \in \mathbb{R}^3 \quad : \quad \mathsf{x}^2 + \mathsf{y}^2 + z^2 = 1\} \{(0,0,1),(0,0,-1)\}$
- 25. Determine si los espacios siguientes son o no homeomorfos dos a dos
 - a) $S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$
 - $b) \mathbb{R}$
 - c) $S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$
 - d) [0, 1[
- 26. Demostrar que $\mathbb{R}^{\mathfrak{n}}$ no es homeomorfo a $\mathbb{R},$ con $\mathfrak{n}>1$

- 27. Decir cuáles son los subconjuntos compactos en \mathbb{R} con la topología cofinita, con la topología de los complementos numerables y, finalmente, con la topología discreta.
- 28. Determine si las siguientes son verdadera o falsas justifique
 - a) Un conjunto compacto siempre es cerrado
 - b) Todo subconjunto de \mathbb{R} con la topológica cofinita es compacto
 - c) Sean X,Y,Z espacios topológicos Si f : X \rightarrow Y y g : Y \rightarrow Z no son continua entonces g \circ f : X \rightarrow Z no es continua.
 - d) Sea $\mathsf{A} = \{ \mathsf{x} \in \mathbb{R}^2 | 1 < \mathsf{d}(0,\mathsf{x}) < 2 \}$ es un conjunto conexo (con la topología usual)
 - e) la intersección de dos conexos con un punto en común es conexo
 - f) Si $f: X \to S^1$ continua y epiyectiva entonces X es compacto.
 - g) Si Y no es conexo, $f: X \to Y$ continua y epiyectiva entonces X es no conexo.
- 29. Sea X un espacio de Hausdorff y sean $K_1, K_2 \subset X$ dos compactos disjuntos. Probar que existen abiertos disjuntos $\mathcal{U}_1, \mathcal{U}_2$ con $K_1 \subset \mathcal{U}_1$ y $K_2 \subset \mathcal{U}_2$.
- 30. Sean A, B compactos con la topología relativa de X e Y respectivamente entonces $A \times B$ es compacto con la topología relativa de $X \times Y$
- 31. Demostrar que si Y es compacto entonces $\pi_1: X \times Y \to X$ es cerrada.
- 32. Sea X un espacio compacto, Y un espacio de Hausdorff y $f: X \to Y$ continua. Demostrar que f es cerrada.
- 33. Sea X un espacio topológico e Y un espacio de Hausdorff compacto y $f: X \to Y$. Probar que f es continua si y sólo si la gráfica de f, Γ_f , es cerrada en $X \times Y$.
- 34. Si X, Y son espacio de Hausdorff compacto. Demostrar $f: X \to Y \text{ es continua si y sólo si } \Gamma_f \text{ es compacta en } X \times Y.$

35. Sea X un espacio compacto y $f:X\to\mathbb{R}$ continua.

Demostrar que existen $c, d \in X$ tal que

$$(\forall x \in X) \, (f(c) \leqslant f(x) \leqslant f(d))$$

36. Se dice X es un espacio métrico es completo si y sólo si toda sucesión de Cauchy es convergente.

Demostrar que todo espacio métrico compacto es completo

Índice alfabético

Arcoconexo, 82	Hausdorff, 25
Compacto, 87	Fréchet, 24
Locamente, 93	Kolmogorov, 24
Punto, 93	Métrico, 50
,	Bola, 51
Conexo, 72	Metrizable, 52
Componente, 81	Normal, 28
por caminos, 84	Regular, 28
Subespacio, 74	
Conexo por caminos, 82	Función
Conjunto	Abierta, 44
Acotado, 52	Cerrada, 44
Adherencia, 19	Continua, 37
Frontera, 19	en un Punto, 43
Interior, 19	Estereográfica, 46
Puntos de Acumulación, 23	Isometría, 63
Convergencia	Homeomorfismo, 44
Uniforme, 62	
	Lema de Urysohn, 98
Espacio	Métrica
$T_0, 24$	
$T_1, 24$	Discreta, 51
$T_2,25$	Uniforme, 56
$T_3, 28$	Usual, 50
$T_4, 28$	Teorema
$T_5, 29$	Compactificación por un Punto, 93
	· · · · · · · · · · · · · · · · · · ·

Topología, 5

Base, 8

Complemento Finito, 7

Débil, 11

Discreta, 5

Final, 18

Generada, 10

Grupo, 10

Inicial, 19

más fina, 8

menos fina, 8

Orden, 7

Producto, 14

Sorgenfrey, 11

Subespacio, 17

Trivial, 5

Union Disjunta, 7

Zariski, 7